Enhancing dissolution of artesunate from immediate release tablets using a green granulation technique

Akram ahmad Bashir, Sameh M. Abdel-Hamid, A. Badawi, A. Geneidi
{"title":"Enhancing dissolution of artesunate from immediate release tablets using a green granulation technique","authors":"Akram ahmad Bashir, Sameh M. Abdel-Hamid, A. Badawi, A. Geneidi","doi":"10.21608/APS.2019.20230","DOIUrl":null,"url":null,"abstract":"Artesunate is a poorly soluble drug and liable to aqueous hydrolysis. This study aims to formulate Artesunate as an immediate release tablet through optimization of the melt granulation technique to improve the dissolution of the drug. Three different meltable binders were used (Polyethylene Glycol PEG 6000, Poloxamer 188 and Gelucire 50/13) for granulation step in high shear mixer prior tablets compression step applying Box-Behnken experimental design to determine the significant variables and their interactions that impact dissolution of Artesunate. Optimization mathematical models showed that by increasing binder concentration, D50 was increased, and narrow particle size distribution with minimum fines percentage was produced. Higher binder concentration and impeller speed resulted in retarding tablets dissolution. PEG 6000 and Poloxamer 188 based tablets showed faster disintegration and dissolution than Gelucire 50/13 based tablets, as well as tablets prepared by wet granulation due to hydrophilic pore forming. Melt granulation technique using a low level of PEG 6000 and Poloxamer 188 not only enhanced the dissolution of Artesunate from their immediate release tablets in comparison to traditional wet granulation technique but also maintained the stability of the product under accelerated conditions of heat and moisture.","PeriodicalId":8314,"journal":{"name":"Archives of Pharmaceutical Sciences Ain Shams University","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmaceutical Sciences Ain Shams University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/APS.2019.20230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Artesunate is a poorly soluble drug and liable to aqueous hydrolysis. This study aims to formulate Artesunate as an immediate release tablet through optimization of the melt granulation technique to improve the dissolution of the drug. Three different meltable binders were used (Polyethylene Glycol PEG 6000, Poloxamer 188 and Gelucire 50/13) for granulation step in high shear mixer prior tablets compression step applying Box-Behnken experimental design to determine the significant variables and their interactions that impact dissolution of Artesunate. Optimization mathematical models showed that by increasing binder concentration, D50 was increased, and narrow particle size distribution with minimum fines percentage was produced. Higher binder concentration and impeller speed resulted in retarding tablets dissolution. PEG 6000 and Poloxamer 188 based tablets showed faster disintegration and dissolution than Gelucire 50/13 based tablets, as well as tablets prepared by wet granulation due to hydrophilic pore forming. Melt granulation technique using a low level of PEG 6000 and Poloxamer 188 not only enhanced the dissolution of Artesunate from their immediate release tablets in comparison to traditional wet granulation technique but also maintained the stability of the product under accelerated conditions of heat and moisture.
利用绿色造粒技术提高青蒿琥酯速释片的溶出度
青蒿琥酯是一种难溶性药物,易在水中水解。本研究旨在通过优化熔体造粒工艺,制备青蒿琥酯速释片,提高药物的溶出度。采用Box-Behnken实验设计,采用聚乙二醇PEG 6000、Poloxamer 188和Gelucire 50/13三种不同的可溶性粘合剂,在高剪切混合器的造粒步骤中进行片前压缩步骤,以确定影响琥酯溶解的重要变量及其相互作用。优化数学模型表明,随着粘结剂浓度的增加,D50增大,粒径分布窄,细粒率最小。较高的粘结剂浓度和叶轮转速对片剂溶出有延缓作用。PEG 6000和波洛沙姆188基片剂的崩解和溶出速度均快于格鲁西尔50/13基片剂和湿法制粒片剂。与传统的湿法造粒技术相比,采用低水平PEG 6000和poloxam188的熔融造粒技术不仅提高了青蒿琥酯速释片的溶出度,而且在高温和潮湿加速条件下保持了产品的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
15
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信