Distributive invariant centrally essential rings

A. Tuganbaev
{"title":"Distributive invariant centrally essential rings","authors":"A. Tuganbaev","doi":"10.1142/s0218196722500709","DOIUrl":null,"url":null,"abstract":"In recent years, centrally essential rings have been intensively studied in ring theory. In particular, they find applications in homological algebra, group rings, and the structural theory of rings. The class of essentially central rings strongly extends the class of commutative rings. For such rings, a number of recent papers contain positive answers to some important questions from ring theory that previously had positive answers for commutative rings and negative answers in the general case. This work is devoted to a similar topic. A familiar description of right Noetherian, right distributive centrally essential rings is generalized on a larger class of rings. Let [Formula: see text] be a ring with prime radical [Formula: see text]. It is proved that [Formula: see text] is a right distributive, right invariant centrally essential ring and [Formula: see text] is a finitely generated right ideal such that the factor-ring [Formula: see text] does non contain an infinite direct sum of nonzero ideals if and only if [Formula: see text], where every ring [Formula: see text] is either a commutative Prüfer domain or an Artinian uniserial ring. The studies of Tuganbaev are supported by Russian scientific foundation project 22-11-00052.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"18 1","pages":"1567-1574"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, centrally essential rings have been intensively studied in ring theory. In particular, they find applications in homological algebra, group rings, and the structural theory of rings. The class of essentially central rings strongly extends the class of commutative rings. For such rings, a number of recent papers contain positive answers to some important questions from ring theory that previously had positive answers for commutative rings and negative answers in the general case. This work is devoted to a similar topic. A familiar description of right Noetherian, right distributive centrally essential rings is generalized on a larger class of rings. Let [Formula: see text] be a ring with prime radical [Formula: see text]. It is proved that [Formula: see text] is a right distributive, right invariant centrally essential ring and [Formula: see text] is a finitely generated right ideal such that the factor-ring [Formula: see text] does non contain an infinite direct sum of nonzero ideals if and only if [Formula: see text], where every ring [Formula: see text] is either a commutative Prüfer domain or an Artinian uniserial ring. The studies of Tuganbaev are supported by Russian scientific foundation project 22-11-00052.
分配不变中心本质环
近年来,中心本质环在环理论中得到了广泛的研究。特别是,它们在同调代数、群环和环的结构理论中得到了应用。本质中心环类是交换环类的强扩展。对于这样的环,最近的一些论文包含了环理论中一些重要问题的正答案,这些问题以前对交换环有正答案,而在一般情况下有负答案。这部作品致力于一个类似的主题。一个熟悉的右noether,右分配中心本质环的描述推广到一个更大的环类上。设[公式:见文]为一个素基环[公式:见文]。证明了[公式:见文]是一个右分配的,右不变的中心本质环,[公式:见文]是一个有限生成的右理想,使得因子环[公式:见文]不包含非零理想的无限直和,当且仅当[公式:见文],其中每个环[公式:见文]要么是一个交换性普适域,要么是一个阿提尼单列环。图甘巴耶夫的研究得到了俄罗斯科学基金项目22-11-00052的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信