Hodge rank of ACM bundles and Franchetta's conjecture

I. Biswas, G. Ravindra
{"title":"Hodge rank of ACM bundles and Franchetta's conjecture","authors":"I. Biswas, G. Ravindra","doi":"10.2422/2036-2145.202203_012","DOIUrl":null,"url":null,"abstract":"We prove that on a general hypersurface in $\\mathbb{P}^N$ of degree $d$ and dimension at least $2$, if an arithmetically Cohen-Macaulay (ACM) bundle $E$ and its dual have small regularity, then any non-trivial Hodge class in $H^{n}(X, E\\otimes\\Omega^n_X)$, $n = \\lfloor\\frac{N-1}{2}\\rfloor$, produces a trivial direct summand of $E$. As a consequence, we prove that there is no universal Ulrich bundle on the family of smooth hypersurfaces of degree $d\\geq 3$ and dimension at least $4$. This last statement may be viewed as a Franchetta-type conjecture for Ulrich bundles on smooth hypersurfaces.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202203_012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that on a general hypersurface in $\mathbb{P}^N$ of degree $d$ and dimension at least $2$, if an arithmetically Cohen-Macaulay (ACM) bundle $E$ and its dual have small regularity, then any non-trivial Hodge class in $H^{n}(X, E\otimes\Omega^n_X)$, $n = \lfloor\frac{N-1}{2}\rfloor$, produces a trivial direct summand of $E$. As a consequence, we prove that there is no universal Ulrich bundle on the family of smooth hypersurfaces of degree $d\geq 3$ and dimension at least $4$. This last statement may be viewed as a Franchetta-type conjecture for Ulrich bundles on smooth hypersurfaces.
ACM束的Hodge秩和Franchetta的猜想
证明了在次为$d$且维数至少为$2$的$\mathbb{P}^N$一般超曲面上,如果一个算术上的Cohen-Macaulay (ACM)束$E$及其对偶具有小正则性,则在$H^{n}(X, E\otimes\Omega^n_X)$, $n = \lfloor\frac{N-1}{2}\rfloor$上的任何非平凡的Hodge类都会产生一个平凡的直接和$E$。因此,我们证明了在次为$d\geq 3$且维数至少为$4$的光滑超曲面族上不存在普遍的Ulrich束。最后一个命题可以看作是光滑超表面上Ulrich束的franchetta型猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信