On the problem of determining parameters in the Schwarz equation

IF 0.5 Q3 MATHEMATICS
I. Kolesnikov
{"title":"On the problem of determining parameters in the Schwarz equation","authors":"I. Kolesnikov","doi":"10.15393/J3.ART.2018.5411","DOIUrl":null,"url":null,"abstract":"P. P. Kufarev’s method makes it possible to reduce the problem of determining the parameters in the Schwarz-Christoffel integral to the problem of successive solutions of systems of ordinary differential equations. B. G. Baibarin obtained a generalization of this method for the problem of determining parameters (preimages of vertices and accessory parameters) in the Schwarz differential equation, whose solution is a holomorphic univalent mapping from the upper half-plane onto a circular-arc polygon. This paper specifies the initial condition for the system of differential equations for the parameters of the Schwarz equation obtained by B. G. Baibarin. This method is used to solve the problem of determining the accessory parameters for some particular mappings.","PeriodicalId":41813,"journal":{"name":"Problemy Analiza-Issues of Analysis","volume":"11 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemy Analiza-Issues of Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15393/J3.ART.2018.5411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

P. P. Kufarev’s method makes it possible to reduce the problem of determining the parameters in the Schwarz-Christoffel integral to the problem of successive solutions of systems of ordinary differential equations. B. G. Baibarin obtained a generalization of this method for the problem of determining parameters (preimages of vertices and accessory parameters) in the Schwarz differential equation, whose solution is a holomorphic univalent mapping from the upper half-plane onto a circular-arc polygon. This paper specifies the initial condition for the system of differential equations for the parameters of the Schwarz equation obtained by B. G. Baibarin. This method is used to solve the problem of determining the accessory parameters for some particular mappings.
关于Schwarz方程中参数的确定问题
P. P. Kufarev方法使Schwarz-Christoffel积分中参数的确定问题简化为常微分方程系统的连续解问题成为可能。B. G. Baibarin对Schwarz微分方程中参数(顶点和辅助参数的原像)的确定问题进行了推广,该问题的解是上半平面到圆弧多边形的全纯一元映射。本文给出了B. G. Baibarin所得到的Schwarz方程参数的微分方程组的初始条件。该方法用于解决某些特定映射的附件参数确定问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信