{"title":"Magma Redox Geochemistry","authors":"M. Blanchard, N. Dauphas","doi":"10.1002/9781119473206","DOIUrl":null,"url":null,"abstract":"Isotopes provide valuable insights into the complex geochemical behavior of iron. To put the wealth of Fe isotopic data measured in natural samples into a quantitative framework, it is important to know how iron isotopes are fractionated at equilibrium between co-existing iron-bearing phases or species. These isotopic equilibrium fractionation factors can be derived from isotopic exchange experiments and the study of natural samples, but can also be calculated from partition functions, whose main contribution is the vibrational energy. This approach relies on first-principles calculations (atomistic modeling based on quantum mechanics) and vibrational spectroscopies (Mössbauer and Nuclear Resonant Inelastic X-ray Scattering – NRIXS). Comparison of the results obtained from these techniques provides confidence in their reliability and improves our understanding of the parameters controlling iron isotopic fractionation among coexisting phases. After an introduction to the theory and methods applied in this field, the chapter will review how NRIXS and first-principles calculations help interpret iron isotopic variations in natural rocks and minerals. At equilibrium, the heavy isotopes of iron will concentrate in the phases where the interatomic force constants are the greatest, meaning in the phases where iron bonds are the stiffest. Higher oxidation state, higher covalency, and lower coordination (shorter bond length) tend to be associated with stronger bonds and heavy iron isotope enrichments.","PeriodicalId":12504,"journal":{"name":"Geophysical Monograph Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Monograph Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119473206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Isotopes provide valuable insights into the complex geochemical behavior of iron. To put the wealth of Fe isotopic data measured in natural samples into a quantitative framework, it is important to know how iron isotopes are fractionated at equilibrium between co-existing iron-bearing phases or species. These isotopic equilibrium fractionation factors can be derived from isotopic exchange experiments and the study of natural samples, but can also be calculated from partition functions, whose main contribution is the vibrational energy. This approach relies on first-principles calculations (atomistic modeling based on quantum mechanics) and vibrational spectroscopies (Mössbauer and Nuclear Resonant Inelastic X-ray Scattering – NRIXS). Comparison of the results obtained from these techniques provides confidence in their reliability and improves our understanding of the parameters controlling iron isotopic fractionation among coexisting phases. After an introduction to the theory and methods applied in this field, the chapter will review how NRIXS and first-principles calculations help interpret iron isotopic variations in natural rocks and minerals. At equilibrium, the heavy isotopes of iron will concentrate in the phases where the interatomic force constants are the greatest, meaning in the phases where iron bonds are the stiffest. Higher oxidation state, higher covalency, and lower coordination (shorter bond length) tend to be associated with stronger bonds and heavy iron isotope enrichments.