{"title":"SecVisor: a tiny hypervisor to provide lifetime kernel code integrity for commodity OSes","authors":"Arvind Seshadri, M. Luk, Ning Qu, A. Perrig","doi":"10.1145/1294261.1294294","DOIUrl":null,"url":null,"abstract":"We propose SecVisor, a tiny hypervisor that ensures code integrity for commodity OS kernels. In particular, SecVisor ensures that only user-approved code can execute in kernel mode over the entire system lifetime. This protects the kernel against code injection attacks, such as kernel rootkits. SecVisor can achieve this propertyeven against an attacker who controls everything but the CPU, the memory controller, and system memory chips. Further, SecVisor can even defend against attackers with knowledge of zero-day kernel exploits.\n Our goal is to make SecVisor amenable to formal verificationand manual audit, thereby making it possible to rule out known classes of vulnerabilities. To this end, SecVisor offers small code size and small external interface. We rely on memory virtualization to build SecVisor and implement two versions, one using software memory virtualization and the other using CPU-supported memory virtualization. The code sizes of the runtime portions of these versions are 1739 and 1112 lines, respectively. The size of the external interface for both versions of SecVisor is 2 hypercalls. It is easy to port OS kernels to SecVisor. We port the Linux kernel version 2.6.20 by adding 12 lines and deleting 81 lines, out of a total of approximately 4.3 million lines of code in the kernel.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":"73 7 1","pages":"335-350"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"716","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1294261.1294294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 716
Abstract
We propose SecVisor, a tiny hypervisor that ensures code integrity for commodity OS kernels. In particular, SecVisor ensures that only user-approved code can execute in kernel mode over the entire system lifetime. This protects the kernel against code injection attacks, such as kernel rootkits. SecVisor can achieve this propertyeven against an attacker who controls everything but the CPU, the memory controller, and system memory chips. Further, SecVisor can even defend against attackers with knowledge of zero-day kernel exploits.
Our goal is to make SecVisor amenable to formal verificationand manual audit, thereby making it possible to rule out known classes of vulnerabilities. To this end, SecVisor offers small code size and small external interface. We rely on memory virtualization to build SecVisor and implement two versions, one using software memory virtualization and the other using CPU-supported memory virtualization. The code sizes of the runtime portions of these versions are 1739 and 1112 lines, respectively. The size of the external interface for both versions of SecVisor is 2 hypercalls. It is easy to port OS kernels to SecVisor. We port the Linux kernel version 2.6.20 by adding 12 lines and deleting 81 lines, out of a total of approximately 4.3 million lines of code in the kernel.