{"title":"A Binary Search Algorithm for Correlation Study of Decay Centrality vs. Degree Centrality and Closeness Centrality","authors":"N. Meghanathan","doi":"10.5539/cis.v10n2p52","DOIUrl":null,"url":null,"abstract":"Results of correlation study (using Pearson's correlation coefficient, PCC) between decay centrality (DEC) vs. degree centrality (DEG) and closeness centrality (CLC) for a suite of 48 real-world networks indicate an interesting trend: PCC(DEC, DEG) decreases with increase in the decay parameter δ (0 < δ < 1) and PCC(DEC, CLC) decreases with decrease in δ . We make use of this trend of monotonic decrease in the PCC values (from both sides of the δ -search space) and propose a binary search algorithm that (given a threshold value r for the PCC) could be used to identify a value of δ (if one exists, we say there exists a positive δ - space r ) for a real-world network such that PCC(DEC, DEG) ≥ r as well as PCC(DEC, CLC) ≥ r . We show the use of the binary search algorithm to find the maximum Threshold PCC value r max (such that δ - space r max is positive) for a real-world network. We observe a very strong correlation between r max and PCC(DEG, CLC) as well as observe real-world networks with a larger variation in node degree to more likely have a lower r max value and vice-versa.","PeriodicalId":14676,"journal":{"name":"J. Chem. Inf. Comput. Sci.","volume":"1 1","pages":"52-75"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Chem. Inf. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/cis.v10n2p52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Results of correlation study (using Pearson's correlation coefficient, PCC) between decay centrality (DEC) vs. degree centrality (DEG) and closeness centrality (CLC) for a suite of 48 real-world networks indicate an interesting trend: PCC(DEC, DEG) decreases with increase in the decay parameter δ (0 < δ < 1) and PCC(DEC, CLC) decreases with decrease in δ . We make use of this trend of monotonic decrease in the PCC values (from both sides of the δ -search space) and propose a binary search algorithm that (given a threshold value r for the PCC) could be used to identify a value of δ (if one exists, we say there exists a positive δ - space r ) for a real-world network such that PCC(DEC, DEG) ≥ r as well as PCC(DEC, CLC) ≥ r . We show the use of the binary search algorithm to find the maximum Threshold PCC value r max (such that δ - space r max is positive) for a real-world network. We observe a very strong correlation between r max and PCC(DEG, CLC) as well as observe real-world networks with a larger variation in node degree to more likely have a lower r max value and vice-versa.