{"title":"SCLPD: Smart Cargo Loading Plan Decision Framework","authors":"Jiaye Liu, Jiali Mao, Jiajun Liao, Huiqi Hu, Ye Guo, Aoying Zhou","doi":"10.1109/ICDE48307.2020.00163","DOIUrl":null,"url":null,"abstract":"The rapid development of steel logistics industry still has not effectively address such issues as truck overload and order overdue as well as cargo overstock. One of the reasons lie in limited number of trucks for transporting large scale cargos. More importantly, traditional methods attend to distribute cargos to trucks with the aim of maximizing the loading of each truck. But they ignore the priority level of orders and the expiration date of cargos stored in the warehouses, which have critical influences on profits of steel logistics industry. Hence, it necessitates an appropriate cargo distribution mechanism under the precondition of limited transportation capacity resources, to guarantee the maximization of delivery proportion for high-priority cargos. Recently, tremendous logistics data has been produced and are being in constant increment hourly in steel logistics platform. However, there is no existing solution to transform such data into actionable scheme to improve cargo distributing effectiveness. This paper puts forward a system implementation of smart cargo loading plan decision framework (SCLPD for short) for steel logistics industry. Through analysis on numerous real data cargo loading plan and inventory of warehouse, some important rules related to cargo distribution process are extracted. Additionally, consider that different amounts of trucks arriving in different time periods, based on adaptive time window model, a two- layer searching mechanism consisting of a genetic algorithm and A* algorithm is designed to ensure global optimization of cargo loading plan for the trucks in all time periods. In our demonstration, we illustrate the procedure of matching for cargos and trucks in various time windows, and showcase the comparison experimental results between the traditional method and SCLPD by the measurement of delivery proportion for high- priority cargos. The effectiveness and practicality of SCLPD enables efficient cargo loading plan generation, to meet the real- world requirements from steel logistics platform.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"1 1","pages":"1758-1761"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The rapid development of steel logistics industry still has not effectively address such issues as truck overload and order overdue as well as cargo overstock. One of the reasons lie in limited number of trucks for transporting large scale cargos. More importantly, traditional methods attend to distribute cargos to trucks with the aim of maximizing the loading of each truck. But they ignore the priority level of orders and the expiration date of cargos stored in the warehouses, which have critical influences on profits of steel logistics industry. Hence, it necessitates an appropriate cargo distribution mechanism under the precondition of limited transportation capacity resources, to guarantee the maximization of delivery proportion for high-priority cargos. Recently, tremendous logistics data has been produced and are being in constant increment hourly in steel logistics platform. However, there is no existing solution to transform such data into actionable scheme to improve cargo distributing effectiveness. This paper puts forward a system implementation of smart cargo loading plan decision framework (SCLPD for short) for steel logistics industry. Through analysis on numerous real data cargo loading plan and inventory of warehouse, some important rules related to cargo distribution process are extracted. Additionally, consider that different amounts of trucks arriving in different time periods, based on adaptive time window model, a two- layer searching mechanism consisting of a genetic algorithm and A* algorithm is designed to ensure global optimization of cargo loading plan for the trucks in all time periods. In our demonstration, we illustrate the procedure of matching for cargos and trucks in various time windows, and showcase the comparison experimental results between the traditional method and SCLPD by the measurement of delivery proportion for high- priority cargos. The effectiveness and practicality of SCLPD enables efficient cargo loading plan generation, to meet the real- world requirements from steel logistics platform.