Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

D. Neven, Bert De Brabandere, M. Proesmans, L. Gool
{"title":"Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth","authors":"D. Neven, Bert De Brabandere, M. Proesmans, L. Gool","doi":"10.1109/CVPR.2019.00904","DOIUrl":null,"url":null,"abstract":"Current state-of-the-art instance segmentation methods are not suited for real-time applications like autonomous driving, which require fast execution times at high accuracy. Although the currently dominant proposal-based methods have high accuracy, they are slow and generate masks at a fixed and low resolution. Proposal-free methods, by contrast, can generate masks at high resolution and are often faster, but fail to reach the same accuracy as the proposal-based methods. In this work we propose a new clustering loss function for proposal-free instance segmentation. The loss function pulls the spatial embeddings of pixels belonging to the same instance together and jointly learns an instance-specific clustering bandwidth, maximizing the intersection-over-union of the resulting instance mask. When combined with a fast architecture, the network can perform instance segmentation in real-time while maintaining a high accuracy. We evaluate our method on the challenging Cityscapes benchmark and achieve top results (5% improvement over Mask R-CNN) at more than 10 fps on 2MP images.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"8829-8837"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"215","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 215

Abstract

Current state-of-the-art instance segmentation methods are not suited for real-time applications like autonomous driving, which require fast execution times at high accuracy. Although the currently dominant proposal-based methods have high accuracy, they are slow and generate masks at a fixed and low resolution. Proposal-free methods, by contrast, can generate masks at high resolution and are often faster, but fail to reach the same accuracy as the proposal-based methods. In this work we propose a new clustering loss function for proposal-free instance segmentation. The loss function pulls the spatial embeddings of pixels belonging to the same instance together and jointly learns an instance-specific clustering bandwidth, maximizing the intersection-over-union of the resulting instance mask. When combined with a fast architecture, the network can perform instance segmentation in real-time while maintaining a high accuracy. We evaluate our method on the challenging Cityscapes benchmark and achieve top results (5% improvement over Mask R-CNN) at more than 10 fps on 2MP images.
联合优化空间嵌入和聚类带宽的实例分割
当前最先进的实例分割方法不适合自动驾驶等实时应用,因为这些应用需要快速的执行时间和高精度。虽然目前主流的基于提议的方法具有很高的精度,但它们速度慢,并且生成的掩码固定且分辨率低。相比之下,无提议的方法可以在高分辨率下生成掩模,并且通常更快,但无法达到与基于提议的方法相同的精度。在这项工作中,我们提出了一种新的聚类损失函数用于无提议的实例分割。损失函数将属于同一实例的像素的空间嵌入拉到一起,并共同学习特定于实例的聚类带宽,最大化所得到的实例掩码的交集-过并。当与快速架构相结合时,网络可以在保持高精度的同时实时执行实例分割。我们在具有挑战性的城市景观基准上评估了我们的方法,并在200万像素的图像上以超过10 fps的速度获得了最佳结果(比Mask R-CNN提高了5%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信