On a nonlocal problem for the first-order differential-operator equations

IF 1 Q1 MATHEMATICS
V. Horodets’kyi, O. Martynyuk, R. Kolisnyk
{"title":"On a nonlocal problem for the first-order differential-operator equations","authors":"V. Horodets’kyi, O. Martynyuk, R. Kolisnyk","doi":"10.15330/cmp.14.2.513-528","DOIUrl":null,"url":null,"abstract":"In this work, we study the spaces of generalised elements identified with formal Fourier series and constructed via a non-negative self-adjoint operator in Hilbert space. The spectrum of this operator is purely discrete. For a differential-operator equation of the first order, we formulate a nonlocal multipoint by time problem if the corresponding condition is satisfied in a positive or negative space that is constructed via such operator; such problem can be treated as a generalisation of an abstract Cauchy problem for the specified differential-operator equation. The correct solvability of the aforementioned problem is proven, a fundamental solution is constructed, and its structure and properties are studied. The solution is represented as an abstract convolution of a fundamental solution with a boundary element. This boundary element is used to formulate a multipoint condition, and it is a linear continuous functional defined in the space of main elements. Furthermore, this solution satisfies multipoint condition in a negative space that is adjoint with a corresponding positive space of elements.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.2.513-528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study the spaces of generalised elements identified with formal Fourier series and constructed via a non-negative self-adjoint operator in Hilbert space. The spectrum of this operator is purely discrete. For a differential-operator equation of the first order, we formulate a nonlocal multipoint by time problem if the corresponding condition is satisfied in a positive or negative space that is constructed via such operator; such problem can be treated as a generalisation of an abstract Cauchy problem for the specified differential-operator equation. The correct solvability of the aforementioned problem is proven, a fundamental solution is constructed, and its structure and properties are studied. The solution is represented as an abstract convolution of a fundamental solution with a boundary element. This boundary element is used to formulate a multipoint condition, and it is a linear continuous functional defined in the space of main elements. Furthermore, this solution satisfies multipoint condition in a negative space that is adjoint with a corresponding positive space of elements.
一阶微分算子方程的非局部问题
本文研究了Hilbert空间中由形式傅里叶级数标识并由非负自伴随算子构造的广义元的空间。这个算子的谱是纯离散的。对于一类一阶微分算子方程,如果在由该算子构造的正或负空间中满足相应的条件,则构造出一个非局部多点时间问题;这类问题可以看作是特定微分算子方程的抽象柯西问题的推广。证明了上述问题的正确可解性,构造了一个基本解,并研究了其结构和性质。该解表示为基本解与边界元的抽象卷积。该边界元被用来表示一个多点条件,它是一个定义在主元空间中的线性连续泛函。进一步,该解满足负空间中的多点条件,该负空间与相应的元素正空间相伴随。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信