{"title":"Fatigue Monitoring and Life Extension for Top Tensioned Production Riser Systems","authors":"B. Mercan, M. Campbell, Clay Thompson","doi":"10.4043/31259-ms","DOIUrl":null,"url":null,"abstract":"\n Top tensioned production riser (TTR) systems are exposed to fatigue loading in deep water as a result of vessel motions and high currents. The accuracy of predictions of the in-place fatigue response, which is a key input for any life extension requests, is dependent on the operating condition during the life of field including fluid contents and top tension. One solution to reduce this uncertainty is to deploy a fatigue monitoring system to assure the long-term integrity and performance of these riser systems. This paper presents results from a recent TTR monitoring campaign and focuses on the impact of top tension variation on riser motion and fatigue response in the field.\n Standalone and ROV deployable motion loggers offer a low cost and robust method of fatigue monitoring. The motion loggers are installed at discrete locations along the TTR to measure riser motions and then determine fatigue accumulations. During one of the recent monitoring campaigns, riser top tension was changed due to operational requirements, which in turn affected the riser fatigue response in the field.\n Field data is collected from two periods for two TTRs. The top tension was adjusted between each campaign allowing the effect of tension on riser fatigue response to be better understood using field measurements. The resulting riser motions and fatigue accumulations will be presented to demonstrate the sensitivity to top tension and highlight the importance of maintaining good records during the field life.\n Currently, there is no single guideline in the US that addresses TTR life-extension programs in detail. The results from this monitoring program are one step forward in better understanding system behavior of deep water TTRs and assessing the feasibility of an extended service life.","PeriodicalId":10936,"journal":{"name":"Day 2 Tue, August 17, 2021","volume":"2014 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31259-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Top tensioned production riser (TTR) systems are exposed to fatigue loading in deep water as a result of vessel motions and high currents. The accuracy of predictions of the in-place fatigue response, which is a key input for any life extension requests, is dependent on the operating condition during the life of field including fluid contents and top tension. One solution to reduce this uncertainty is to deploy a fatigue monitoring system to assure the long-term integrity and performance of these riser systems. This paper presents results from a recent TTR monitoring campaign and focuses on the impact of top tension variation on riser motion and fatigue response in the field.
Standalone and ROV deployable motion loggers offer a low cost and robust method of fatigue monitoring. The motion loggers are installed at discrete locations along the TTR to measure riser motions and then determine fatigue accumulations. During one of the recent monitoring campaigns, riser top tension was changed due to operational requirements, which in turn affected the riser fatigue response in the field.
Field data is collected from two periods for two TTRs. The top tension was adjusted between each campaign allowing the effect of tension on riser fatigue response to be better understood using field measurements. The resulting riser motions and fatigue accumulations will be presented to demonstrate the sensitivity to top tension and highlight the importance of maintaining good records during the field life.
Currently, there is no single guideline in the US that addresses TTR life-extension programs in detail. The results from this monitoring program are one step forward in better understanding system behavior of deep water TTRs and assessing the feasibility of an extended service life.