Nonexistence of anti-symmetric solutions for fractional Hardy–Hénon system

IF 1.3 3区 数学 Q1 MATHEMATICS
Jiaqian Hu, Zhuoran Du
{"title":"Nonexistence of anti-symmetric solutions for fractional Hardy–Hénon system","authors":"Jiaqian Hu, Zhuoran Du","doi":"10.1017/prm.2023.40","DOIUrl":null,"url":null,"abstract":"<jats:p>We study anti-symmetric solutions about the hyperplane <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:tex-math>$\\{x_n=0\\}$</jats:tex-math>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523000409_inline1.png\" />\n\t </jats:alternatives>\n\t </jats:inline-formula> for the following fractional Hardy–Hénon system:\n<jats:disp-formula>\n\t <jats:alternatives>\n\t\t<jats:tex-math>\\[ \\left\\{\\begin{array}{@{}ll} (-\\Delta)^{s_1}u(x)=|x|^\\alpha v^p(x), & x\\in\\mathbb{R}_+^n, \\\\ (-\\Delta)^{s_2}v(x)=|x|^\\beta u^q(x), & x\\in\\mathbb{R}_+^n, \\\\ u(x)\\geq 0, & v(x)\\geq 0,\\ x\\in\\mathbb{R}_+^n, \\end{array}\\right. \\]</jats:tex-math>\n\t\t<jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0308210523000409_eqnU1.png\" />\n\t </jats:alternatives>\n\t </jats:disp-formula>where <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:tex-math>$0< s_1,s_2<1$</jats:tex-math>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523000409_inline2.png\" />\n\t </jats:alternatives>\n\t </jats:inline-formula>, <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:tex-math>$n>2\\max \\{s_1,s_2\\}$</jats:tex-math>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523000409_inline3.png\" />\n\t </jats:alternatives>\n\t </jats:inline-formula>. Nonexistence of anti-symmetric solutions are obtained in some appropriate domains of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:tex-math>$(p,q)$</jats:tex-math>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523000409_inline4.png\" />\n\t </jats:alternatives>\n\t </jats:inline-formula> under some corresponding assumptions of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:tex-math>$\\alpha,\\beta$</jats:tex-math>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523000409_inline5.png\" />\n\t </jats:alternatives>\n\t </jats:inline-formula> via the methods of moving spheres and moving planes. Particularly, for the case <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:tex-math>$s_1=s_2$</jats:tex-math>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523000409_inline6.png\" />\n\t </jats:alternatives>\n\t </jats:inline-formula>, one of our results shows that one domain of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:tex-math>$(p,q)$</jats:tex-math>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523000409_inline7.png\" />\n\t </jats:alternatives>\n\t </jats:inline-formula>, where nonexistence of anti-symmetric solutions with appropriate decay conditions at infinity hold true, locates at above the fractional Sobolev's hyperbola under appropriate condition of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:tex-math>$\\alpha, \\beta$</jats:tex-math>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523000409_inline8.png\" />\n\t </jats:alternatives>\n\t </jats:inline-formula>.</jats:p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"12 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2023.40","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study anti-symmetric solutions about the hyperplane $\{x_n=0\}$ for the following fractional Hardy–Hénon system: \[ \left\{\begin{array}{@{}ll} (-\Delta)^{s_1}u(x)=|x|^\alpha v^p(x), & x\in\mathbb{R}_+^n, \\ (-\Delta)^{s_2}v(x)=|x|^\beta u^q(x), & x\in\mathbb{R}_+^n, \\ u(x)\geq 0, & v(x)\geq 0,\ x\in\mathbb{R}_+^n, \end{array}\right. \] where $0< s_1,s_2<1$ , $n>2\max \{s_1,s_2\}$ . Nonexistence of anti-symmetric solutions are obtained in some appropriate domains of $(p,q)$ under some corresponding assumptions of $\alpha,\beta$ via the methods of moving spheres and moving planes. Particularly, for the case $s_1=s_2$ , one of our results shows that one domain of $(p,q)$ , where nonexistence of anti-symmetric solutions with appropriate decay conditions at infinity hold true, locates at above the fractional Sobolev's hyperbola under appropriate condition of $\alpha, \beta$ .
分数阶hardy - h系统反对称解的不存在性
我们研究了以下分数阶hardy - hsamnon系统关于超平面$\{x_n=0\}$的反对称解:\[\left\ \begin{array}{@{}ll} (-\Delta)^{s_1}u(x)=|x|^\alpha v^p(x), \\ (-\Delta)^{s_2}v(x)=|x|^\beta u^q(x), & x\in\mathbb{R}_+^n, \\ u(x)\geq 0,\ x\in\mathbb{R}_+^n, \end{array}\right。$0< s_1,s_2, $n>2\max \{s_1,s_2\}$;通过运动球面和运动平面的方法,在$\ α,\ β $的一些相应的假设下,得到了$(p,q)$的一些适当的定域上的反对称解的不存在性。特别地,对于s_1=s_2$的情况,我们的一个结果表明,在$\ α, \ β $的适当条件下,$(p,q)$的一个定义域位于分数Sobolev双曲线的上方,该定义域在无穷远处具有适当衰减条件的反对称解的不存在性成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信