Derived Traces of Soergel Categories

E. Gorsky, Matthew Hogancamp, Paul Wedrich
{"title":"Derived Traces of Soergel Categories","authors":"E. Gorsky, Matthew Hogancamp, Paul Wedrich","doi":"10.1093/IMRN/RNAB019","DOIUrl":null,"url":null,"abstract":"Author(s): Gorsky, Eugene; Hogancamp, Matthew; Wedrich, Paul | Abstract: We study two kinds of categorical traces of (monoidal) dg categories, with particular interest in categories of Soergel bimodules. First, we explicitly compute the usual Hochschild homology, or derived vertical trace, of the category of Soergel bimodules in arbitrary types. Secondly, we introduce the notion of derived horizontal trace of a monoidal dg category and compute the derived horizontal trace of Soergel bimodules in type A. As an application we obtain a derived annular Khovanov-Rozansky link invariant with an action of full twist insertion, and thus a categorification of the HOMFLY-PT skein module of the solid torus.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Author(s): Gorsky, Eugene; Hogancamp, Matthew; Wedrich, Paul | Abstract: We study two kinds of categorical traces of (monoidal) dg categories, with particular interest in categories of Soergel bimodules. First, we explicitly compute the usual Hochschild homology, or derived vertical trace, of the category of Soergel bimodules in arbitrary types. Secondly, we introduce the notion of derived horizontal trace of a monoidal dg category and compute the derived horizontal trace of Soergel bimodules in type A. As an application we obtain a derived annular Khovanov-Rozansky link invariant with an action of full twist insertion, and thus a categorification of the HOMFLY-PT skein module of the solid torus.
Soergel范畴的衍生轨迹
作者:戈尔斯基,尤金;Hogancamp,马太福音;摘要:我们研究了(一元)dg范畴的两类范畴迹,特别关注了Soergel双模的范畴。首先,我们显式地计算了任意类型Soergel双模范畴的通常Hochschild同调或派生的垂直迹。其次,我们引入了单线dg范畴的派生水平迹的概念,并计算了a型Soergel双模的派生水平迹。作为应用,我们得到了一个具有全扭转插入作用的派生环状Khovanov-Rozansky连杆不变量,从而得到了实体环面的HOMFLY-PT绞结模的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信