{"title":"ConfusionTree-Pattern: A Hierarchical Design for an Efficient and Performant Multi-Class Pattern","authors":"M. F. Adesso, Nicola Wolpert, E. Schömer","doi":"10.1109/ICMLA52953.2021.00125","DOIUrl":null,"url":null,"abstract":"Developing neural networks for supervised multi-class classification has become important for theory and practice. An essential point is the design of the underlying network. Beside single-network approaches there are several multi-class patterns which decompose a classification problem into multiple sub-problems and derive systems of neural networks. We show that existing multi-class patterns can be improved by a new and simple labeling scheme for the training of the sub-problems. We efficiently derive a class hierarchy which is optimized for our labeling scheme and, unlike most of existing works, has no schematic restrictions. Based on that we introduce a hierarchical multi-class pattern, called ConfusionTree-pattern, which is able to reach high classification accuracies. Our experiments show that our multi-class ConfusionTree-pattern reaches state-of-the-art results regarding performance and efficiency.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"39 1","pages":"754-759"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Developing neural networks for supervised multi-class classification has become important for theory and practice. An essential point is the design of the underlying network. Beside single-network approaches there are several multi-class patterns which decompose a classification problem into multiple sub-problems and derive systems of neural networks. We show that existing multi-class patterns can be improved by a new and simple labeling scheme for the training of the sub-problems. We efficiently derive a class hierarchy which is optimized for our labeling scheme and, unlike most of existing works, has no schematic restrictions. Based on that we introduce a hierarchical multi-class pattern, called ConfusionTree-pattern, which is able to reach high classification accuracies. Our experiments show that our multi-class ConfusionTree-pattern reaches state-of-the-art results regarding performance and efficiency.