{"title":"Augmentative biological control in greenhouses in Japan.","authors":"E. Yano","doi":"10.1079/pavsnnr202116060","DOIUrl":null,"url":null,"abstract":"Abstract\n In Japan, augmentative biological control is mainly implemented in greenhouses using arthropod natural enemies. Two imported natural enemy species, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) against spider mites and Encarsia formosa Gahan (Hymenoptera: Aphelinidae) against the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), were first commercialised in greenhouses in 1995, followed by the commercialisation of other exotic species. Exotic arthropod natural enemies are used to control both exotic and indigenous pests in greenhouses. Currently, the most popular exotic natural enemy species are predatory mites such as P. persimilis and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Recently, there has been a shift from using exotic to using indigenous natural enemies in greenhouses. Currently, the importation of generalist predators for augmentative biological control is very difficult in Japan. Several collaborative studies have been conducted in Japan to develop biological control using indigenous natural enemies. These studies developed innovative technologies, such as new banker plant systems based on combinations of two natural enemies or flightless Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Indigenous natural enemies have been commercialised following the registration of Orius strigicollis (Poppius) (Hemiptera: Anthocoridae). Biological control can be achieved using an indigenous strain of Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) with a banker plant system, on which the bug can reproduce without alternative prey. Research and development of biological control using indigenous natural enemies should be continued in Japan.","PeriodicalId":39273,"journal":{"name":"CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1079/pavsnnr202116060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Veterinary","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract
In Japan, augmentative biological control is mainly implemented in greenhouses using arthropod natural enemies. Two imported natural enemy species, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) against spider mites and Encarsia formosa Gahan (Hymenoptera: Aphelinidae) against the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), were first commercialised in greenhouses in 1995, followed by the commercialisation of other exotic species. Exotic arthropod natural enemies are used to control both exotic and indigenous pests in greenhouses. Currently, the most popular exotic natural enemy species are predatory mites such as P. persimilis and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Recently, there has been a shift from using exotic to using indigenous natural enemies in greenhouses. Currently, the importation of generalist predators for augmentative biological control is very difficult in Japan. Several collaborative studies have been conducted in Japan to develop biological control using indigenous natural enemies. These studies developed innovative technologies, such as new banker plant systems based on combinations of two natural enemies or flightless Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Indigenous natural enemies have been commercialised following the registration of Orius strigicollis (Poppius) (Hemiptera: Anthocoridae). Biological control can be achieved using an indigenous strain of Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) with a banker plant system, on which the bug can reproduce without alternative prey. Research and development of biological control using indigenous natural enemies should be continued in Japan.