Stabilizing control of an autonomous bicycle

Harun Yetkin, Ü. Özgüner
{"title":"Stabilizing control of an autonomous bicycle","authors":"Harun Yetkin, Ü. Özgüner","doi":"10.1109/ASCC.2013.6606316","DOIUrl":null,"url":null,"abstract":"The problem of self-stabilization of a bicycle has been a research area for more than a century. However, many researchers have confined their study in self stabilization of bicycles at constant velocities. In this paper, we utilized the precession effect of the gyroscope to stabilize the bicycle both at zero forward velocity and varying velocities. Equation of motion of a bicycle with a flywheel mounted on its bottom is derived and a first order observer-based sliding mode controller is designed. The performance of the controller is simulated on different road structures. It is shown that the designed controller succeeded to stabilize the bicycle throughout the trajectory.","PeriodicalId":6304,"journal":{"name":"2013 9th Asian Control Conference (ASCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th Asian Control Conference (ASCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASCC.2013.6606316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The problem of self-stabilization of a bicycle has been a research area for more than a century. However, many researchers have confined their study in self stabilization of bicycles at constant velocities. In this paper, we utilized the precession effect of the gyroscope to stabilize the bicycle both at zero forward velocity and varying velocities. Equation of motion of a bicycle with a flywheel mounted on its bottom is derived and a first order observer-based sliding mode controller is designed. The performance of the controller is simulated on different road structures. It is shown that the designed controller succeeded to stabilize the bicycle throughout the trajectory.
自动自行车的稳定控制
一个多世纪以来,自行车的自稳定问题一直是一个研究领域。然而,许多研究者将他们的研究局限于自行车在等速下的自稳定。在本文中,我们利用陀螺仪的进动效应来稳定自行车在零前进速度和变速度下的稳定性。推导了底部装有飞轮的自行车运动方程,设计了基于观测器的一阶滑模控制器。对该控制器在不同道路结构上的性能进行了仿真。仿真结果表明,所设计的控制器成功地实现了自行车的全程稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信