Arrhythmia Detection Algorithm using GoogLeNet and Generative Adversarial Network with Lifelog Signals

Siho Shin, Jaehyo Jung, Mingu Kang, Y. Kim
{"title":"Arrhythmia Detection Algorithm using GoogLeNet and Generative Adversarial Network with Lifelog Signals","authors":"Siho Shin, Jaehyo Jung, Mingu Kang, Y. Kim","doi":"10.46300/91011.2021.15.1","DOIUrl":null,"url":null,"abstract":"Arrhythmia is a cardiovascular disease with an irregular heartbeat, which can lead to a heart attack if it lasts for an excessive amount of time. Because the symptoms of arrhythmia occur irregularly, the heart needs to be monitored for a lengthy time period. This study suggests an arrhythmia diagnosis algorithm using GoogLeNet and a GAN. Because the algorithm proposed in this study can add to the number of data using a GAN, it can accurately diagnose an arrhythmic occurrence from measured lifelog over a short period of time. The classification of ECG data using GoogLeNet and a GAN showed an accuracy of approximately 99%.","PeriodicalId":13849,"journal":{"name":"International Journal of Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/91011.2021.15.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arrhythmia is a cardiovascular disease with an irregular heartbeat, which can lead to a heart attack if it lasts for an excessive amount of time. Because the symptoms of arrhythmia occur irregularly, the heart needs to be monitored for a lengthy time period. This study suggests an arrhythmia diagnosis algorithm using GoogLeNet and a GAN. Because the algorithm proposed in this study can add to the number of data using a GAN, it can accurately diagnose an arrhythmic occurrence from measured lifelog over a short period of time. The classification of ECG data using GoogLeNet and a GAN showed an accuracy of approximately 99%.
基于GoogLeNet和生成对抗网络的心律失常检测算法
心律失常是一种伴有不规则心跳的心血管疾病,如果持续时间过长,可能会导致心脏病发作。由于心律失常的症状发生不规律,需要长时间监测心脏。本研究提出了一种基于GoogLeNet和GAN的心律失常诊断算法。由于本研究中提出的算法可以增加使用GAN的数据数量,因此它可以在短时间内从测量的生命日志中准确地诊断出心律失常的发生。使用GoogLeNet和GAN对心电数据进行分类,准确率约为99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信