Yaron Ogen, M. Denk, C. Glaesser, H. Eichstaedt, R. Kahnt, R. Loeser, Rudolf Suppes, M. Chimeddorj, Tugsbuyan Tsedenbaljir, Undrakhtamir Alyeksandr, Tsedendamba Oyunbuyan
{"title":"Quantification of the Spectral Variability of Ore-Bearing Granodiorite under Supervised and Semisupervised Conditions: An Upscaling Approach","authors":"Yaron Ogen, M. Denk, C. Glaesser, H. Eichstaedt, R. Kahnt, R. Loeser, Rudolf Suppes, M. Chimeddorj, Tugsbuyan Tsedenbaljir, Undrakhtamir Alyeksandr, Tsedendamba Oyunbuyan","doi":"10.1155/2021/2580827","DOIUrl":null,"url":null,"abstract":"Reflectance spectroscopy is a nondestructive, rapid, and easy-to-use technique which can be used to assess the composition of rocks qualitatively or quantitatively. Although it is a powerful tool, it has its limitations especially when it comes to measurements of rocks with a phaneritic texture. The external variability is reflected only in spectroscopy and not in the chemical-mineralogical measurements that are performed on crushed rock in certified laboratories. Hence, the spectral variability of the surface of an uncrushed rock will, in most cases, be higher than the internal chemical-mineralogical variability, which may impair statistical models built on field measurements. For this reason, studying ore-bearing rocks and evaluating their spectral variability in different scales is an important procedure to better understand the factors that may influence the qualitative and quantitative analysis of the rocks. The objectives are to quantify the spectral variability of three types of altered granodiorite using well-established statistical methods with an upscaling approach. With this approach, the samples were measured in the laboratory under supervised ambient conditions and in the field under semisupervised conditions. This study further aims to conclude which statistical method provides the best practical and accurate classification for use in future studies. Our results showed that all statistical methods enable the separation of the rock types, although two types of rocks have exhibited almost identical spectra. Furthermore, the statistical methods that supplied the most significant results for classification purposes were principal component analysis combined with k-nearest neighbor with a classification accuracy for laboratory and field measurements of 68.1% and 100%, respectively.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"90 3 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2021/2580827","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Reflectance spectroscopy is a nondestructive, rapid, and easy-to-use technique which can be used to assess the composition of rocks qualitatively or quantitatively. Although it is a powerful tool, it has its limitations especially when it comes to measurements of rocks with a phaneritic texture. The external variability is reflected only in spectroscopy and not in the chemical-mineralogical measurements that are performed on crushed rock in certified laboratories. Hence, the spectral variability of the surface of an uncrushed rock will, in most cases, be higher than the internal chemical-mineralogical variability, which may impair statistical models built on field measurements. For this reason, studying ore-bearing rocks and evaluating their spectral variability in different scales is an important procedure to better understand the factors that may influence the qualitative and quantitative analysis of the rocks. The objectives are to quantify the spectral variability of three types of altered granodiorite using well-established statistical methods with an upscaling approach. With this approach, the samples were measured in the laboratory under supervised ambient conditions and in the field under semisupervised conditions. This study further aims to conclude which statistical method provides the best practical and accurate classification for use in future studies. Our results showed that all statistical methods enable the separation of the rock types, although two types of rocks have exhibited almost identical spectra. Furthermore, the statistical methods that supplied the most significant results for classification purposes were principal component analysis combined with k-nearest neighbor with a classification accuracy for laboratory and field measurements of 68.1% and 100%, respectively.
期刊介绍:
Journal of Spectroscopy (formerly titled Spectroscopy: An International Journal) is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of spectroscopy.