{"title":"Aarohi: Making Real-Time Node Failure Prediction Feasible","authors":"Anwesha Das, F. Mueller, B. Rountree","doi":"10.1109/IPDPS47924.2020.00115","DOIUrl":null,"url":null,"abstract":"Large-scale production systems are well known to encounter node failures, which affect compute capacity and energy. Both in HPC systems and enterprise data centers, combating failures is becoming challenging with increasing hardware and software complexity. Several data mining solutions of logs have been investigated in the context of anomaly detection in such systems. However, with subsequent proactive failure mitigation, the existing log mining solutions are not sufficiently fast for real-time anomaly detection. Machine learning (ML)-based training can produce high accuracy but the inference scheme needs to be enhanced with rapid parsers to assess anomalies in real-time. This work tackles online anomaly prediction in computing systems by exploiting context free grammar-based rapid event analysis.We present our framework Aarohi1, which describes an effective way to predict failures online. Aarohi is designed to be generic and scalable making it suitable as a real-time predictor. Aarohi obtains more than 3 minutes lead times to node failures with an average of 0.31 msecs prediction time for a chain length of 18. The overall improvement obtained w.r.t. the existing state-of-the-art is over a factor of 27.4×. Our compiler-based approach provides new research directions for lead time optimization with a significant prediction speedup required for the deployment of proactive fault tolerant solutions in practice.","PeriodicalId":6805,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"38 1","pages":"1092-1101"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS47924.2020.00115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Large-scale production systems are well known to encounter node failures, which affect compute capacity and energy. Both in HPC systems and enterprise data centers, combating failures is becoming challenging with increasing hardware and software complexity. Several data mining solutions of logs have been investigated in the context of anomaly detection in such systems. However, with subsequent proactive failure mitigation, the existing log mining solutions are not sufficiently fast for real-time anomaly detection. Machine learning (ML)-based training can produce high accuracy but the inference scheme needs to be enhanced with rapid parsers to assess anomalies in real-time. This work tackles online anomaly prediction in computing systems by exploiting context free grammar-based rapid event analysis.We present our framework Aarohi1, which describes an effective way to predict failures online. Aarohi is designed to be generic and scalable making it suitable as a real-time predictor. Aarohi obtains more than 3 minutes lead times to node failures with an average of 0.31 msecs prediction time for a chain length of 18. The overall improvement obtained w.r.t. the existing state-of-the-art is over a factor of 27.4×. Our compiler-based approach provides new research directions for lead time optimization with a significant prediction speedup required for the deployment of proactive fault tolerant solutions in practice.