Julia Böttcher, Olaf Parczyk, Amedeo Sgueglia, J. Skokan
{"title":"Triangles in randomly perturbed graphs","authors":"Julia Böttcher, Olaf Parczyk, Amedeo Sgueglia, J. Skokan","doi":"10.1017/S0963548322000153","DOIUrl":null,"url":null,"abstract":"We study the problem of finding pairwise vertex-disjoint triangles in the randomly perturbed graph model, which is the union of any $n$-vertex graph $G$ with linear minimum degree and the binomial random graph $G(n,p)$. We prove that asymptotically almost surely $G \\cup G(n,p)$ contains $\\min \\{\\delta(G), \\lfloor n/3 \\rfloor \\}$ pairwise vertex-disjoint triangles, provided $p \\ge C \\log n/n$, where $C$ is a large enough constant. This is a perturbed version of an old result of Dirac. Our result is asymptotically optimal and answers a question of Han, Morris, and Treglown [RSA, to appear] in the case of triangle-factors. Together with a result of Balogh, Treglown, and Wagner [CPC, 2019, no. 2, 159-176] this fully resolves the existence of triangle-factors in randomly perturbed graphs. We also prove a stability version of our result. Finally, we discuss further generalisations to larger clique-factors, larger cycle-factors, and $2$-universality.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0963548322000153","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 10
Abstract
We study the problem of finding pairwise vertex-disjoint triangles in the randomly perturbed graph model, which is the union of any $n$-vertex graph $G$ with linear minimum degree and the binomial random graph $G(n,p)$. We prove that asymptotically almost surely $G \cup G(n,p)$ contains $\min \{\delta(G), \lfloor n/3 \rfloor \}$ pairwise vertex-disjoint triangles, provided $p \ge C \log n/n$, where $C$ is a large enough constant. This is a perturbed version of an old result of Dirac. Our result is asymptotically optimal and answers a question of Han, Morris, and Treglown [RSA, to appear] in the case of triangle-factors. Together with a result of Balogh, Treglown, and Wagner [CPC, 2019, no. 2, 159-176] this fully resolves the existence of triangle-factors in randomly perturbed graphs. We also prove a stability version of our result. Finally, we discuss further generalisations to larger clique-factors, larger cycle-factors, and $2$-universality.
期刊介绍:
Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.