Beta-Glycosidase Activities of Lactobacillus spp. and Bifidobacterium spp. and The Effect of Different Physiological Conditions on Enzyme Activity

Q1 Engineering
Berat Cinar Acar, Z. Yüksekdağ
{"title":"Beta-Glycosidase Activities of Lactobacillus spp. and Bifidobacterium spp. and The Effect of Different Physiological Conditions on Enzyme Activity","authors":"Berat Cinar Acar, Z. Yüksekdağ","doi":"10.28978/nesciences.1223571","DOIUrl":null,"url":null,"abstract":"In this research, food (cheese, yoghurt) and animal (chicken) origin 39 Lactobacillus spp. and human origin (newborn faeces) three Bifidobacterium spp. were used. To designate the β-glycosidase enzyme and specific activities of the cultures, p-nitrophenyl-β-D glikopiranozit (p-NPG) was used as a substrate. The best specific activities between Lactobacilli cultures were observed at Lactobacillus rhamnosus BAZ78 (4.500 U/mg), L. rhamnosus SMP6-5 (2.670 U/mg), L. casei LB65 (3.000 U/mg) and L. casei LE4 (2.000 U/mg) strains. Bifidobacterium breve A28 (2.670 U/mg) and B. longum BASO15 (2.330 U/mg) strains belonging to the Bifidobacterium cultures had the highest specific activity capabilities. Optimization studies were performed to designate the impact of different pH, temperature, and carbon sources on the β-glucosidase enzyme of L. rhamnosus BAZ78 strain (β-Glu-BAZ78), which exhibits high specific activity. As optimum conditions, pH was detected as 7.5, the temperature as 30° C, and the carbon source as 2% glucose for the enzyme. Although the enzyme activity changed as the physiological conditions changed, the β-Glu-BAZ78 showed the highest specificity in the control groups.","PeriodicalId":37519,"journal":{"name":"Periodicals of Engineering and Natural Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodicals of Engineering and Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28978/nesciences.1223571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

In this research, food (cheese, yoghurt) and animal (chicken) origin 39 Lactobacillus spp. and human origin (newborn faeces) three Bifidobacterium spp. were used. To designate the β-glycosidase enzyme and specific activities of the cultures, p-nitrophenyl-β-D glikopiranozit (p-NPG) was used as a substrate. The best specific activities between Lactobacilli cultures were observed at Lactobacillus rhamnosus BAZ78 (4.500 U/mg), L. rhamnosus SMP6-5 (2.670 U/mg), L. casei LB65 (3.000 U/mg) and L. casei LE4 (2.000 U/mg) strains. Bifidobacterium breve A28 (2.670 U/mg) and B. longum BASO15 (2.330 U/mg) strains belonging to the Bifidobacterium cultures had the highest specific activity capabilities. Optimization studies were performed to designate the impact of different pH, temperature, and carbon sources on the β-glucosidase enzyme of L. rhamnosus BAZ78 strain (β-Glu-BAZ78), which exhibits high specific activity. As optimum conditions, pH was detected as 7.5, the temperature as 30° C, and the carbon source as 2% glucose for the enzyme. Although the enzyme activity changed as the physiological conditions changed, the β-Glu-BAZ78 showed the highest specificity in the control groups.
乳杆菌和双歧杆菌β -糖苷酶活性及不同生理条件对酶活性的影响
本研究采用食品(奶酪、酸奶)和动物(鸡)源性39株乳酸菌和人(新生儿粪便)源性3株双歧杆菌。以对硝基苯-β-D glikopiranozit (p-NPG)为底物,确定培养物的β-糖苷酶和特异性活性。鼠李糖乳杆菌BAZ78 (4.500 U/mg)、鼠李糖乳杆菌SMP6-5 (2.670 U/mg)、干酪乳杆菌LB65 (3.000 U/mg)和干酪乳杆菌LE4 (2.000 U/mg)培养物的比活性最高。双歧杆菌短双歧杆菌A28 (2.670 U/mg)和长双歧杆菌BASO15 (2.330 U/mg)菌株的比活能力最高。通过优化研究,确定了不同pH、温度和碳源对L. rhamnosus BAZ78菌株(β-Glu-BAZ78) β-葡萄糖苷酶具有高比活性的影响。最佳条件为pH为7.5,温度为30℃,碳源为2%葡萄糖。虽然酶活性随生理条件的变化而变化,但β-Glu-BAZ78在对照组中表现出最高的特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
140
审稿时长
7 weeks
期刊介绍: *Industrial Engineering: 1 . Ergonomics 2 . Manufacturing 3 . TQM/quality engineering, reliability/maintenance engineering 4 . Production Planning 5 . Facility location, layout, design, materials handling 6 . Education, case studies 7 . Inventory, logistics, transportation, supply chain management 8 . Management 9 . Project/operations management, scheduling 10 . Information systems for production and management 11 . Innovation, knowledge management, organizational learning *Mechanical Engineering: 1 . Energy 2 . Machine Design 3 . Engineering Materials 4 . Manufacturing 5 . Mechatronics & Robotics 6 . Transportation 7 . Fluid Mechanics 8 . Optical Engineering 9 . Nanotechnology 10 . Maintenance & Safety *Computer Science: 1 . Computational Intelligence 2 . Computer Graphics 3 . Data Mining 4 . Human-Centered Computing 5 . Internet and Web Computing 6 . Mobile and Cloud computing 7 . Software Engineering 8 . Online Social Networks *Electrical and electronics engineering 1 . Sensor, automation and instrumentation technology 2 . Telecommunications 3 . Power systems 4 . Electronics 5 . Nanotechnology *Architecture: 1 . Advanced digital applications in architecture practice and computation within Generative processes of design 2 . Computer science, biology and ecology connected with structural engineering 3 . Technology and sustainability in architecture *Bioengineering: 1 . Medical Sciences 2 . Biological and Biomedical Sciences 3 . Agriculture and Life Sciences 4 . Biology and neuroscience 5 . Biological Sciences (Botany, Forestry, Cell Biology, Marine Biology, Zoology) [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信