Glass Formation in Ni-Zr-(Al) Alloy Systems

Lan Huang, Song Li
{"title":"Glass Formation in Ni-Zr-(Al) Alloy Systems","authors":"Lan Huang, Song Li","doi":"10.1155/2013/575640","DOIUrl":null,"url":null,"abstract":"Structural and thermal properties of binary () alloys obtained by melt spinning and copper mold casting methods were investigated. The fully amorphous samples in a bulk form cannot be obtained in the binary Ni-Zr alloys over a wide composition range, though they have and values close to or even higher than those of the binary Cu-Zr bulk metallic glasses (BMGs). The low thermal stability of the supercooled liquid against crystallization and the formation of the equilibrium crystalline phases with a high growth rate are responsible for their low glass-forming abilities (GFAs). Relatively low thermal conductivities of Ni-based alloys are also considered to be another factor to limit their GFAs. The GFA of the binary Ni65.5Zr34.5 alloy alloyed with 4% or 5% Al was enhanced, and a fully glassy rod with a diameter of 0.5 mm was formed.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"3 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/575640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Structural and thermal properties of binary () alloys obtained by melt spinning and copper mold casting methods were investigated. The fully amorphous samples in a bulk form cannot be obtained in the binary Ni-Zr alloys over a wide composition range, though they have and values close to or even higher than those of the binary Cu-Zr bulk metallic glasses (BMGs). The low thermal stability of the supercooled liquid against crystallization and the formation of the equilibrium crystalline phases with a high growth rate are responsible for their low glass-forming abilities (GFAs). Relatively low thermal conductivities of Ni-based alloys are also considered to be another factor to limit their GFAs. The GFA of the binary Ni65.5Zr34.5 alloy alloyed with 4% or 5% Al was enhanced, and a fully glassy rod with a diameter of 0.5 mm was formed.
Ni-Zr-(Al)合金体系中的玻璃形成
研究了熔体纺丝法和铜模铸造法制备的二元合金的组织和热性能。在较宽的成分范围内,二元Ni-Zr合金不能获得大块形式的完全非晶态样品,尽管它们的和值接近甚至高于二元Cu-Zr大块金属玻璃(bmg)。过冷液体对结晶的低热稳定性和高生长速率的平衡晶相的形成是其低玻璃形成能力的原因。镍基合金相对较低的热导率也被认为是限制其gfa的另一个因素。添加4%或5% Al的Ni65.5Zr34.5二元合金的GFA得到增强,形成了直径为0.5 mm的全玻璃化棒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信