Serviceability performance of buildings founded on rubber–soil mixtures for geotechnical seismic isolation

IF 0.9 Q4 ENGINEERING, CIVIL
H. Tsang, Duc-Phu Tran, E. Gad
{"title":"Serviceability performance of buildings founded on rubber–soil mixtures for geotechnical seismic isolation","authors":"H. Tsang, Duc-Phu Tran, E. Gad","doi":"10.1080/13287982.2023.2230063","DOIUrl":null,"url":null,"abstract":"ABSTRACT Base isolation is a low-damage seismic design strategy that can be used for constructing resilient structures. Geotechnical seismic isolation (GSI) is a new category of emerging base isolation techniques that has attracted global interest in the past decade. Research on GSI based on rubber-soil mixtures (RSM) has focused on structural performance under earthquake actions, whilst there are concerns over the serviceability limit states (SLS) requirements in relation to (i) human comfort under strong winds and (ii) ground settlement under gravity, which may induce cracking and durability issues in structures. This article presents the first study on the serviceability performance of buildings constructed with the GSI-RSM system. The finite element model of a coupled soil-foundation-structure system has been validated by data recorded from geotechnical centrifuge testing. The numerical estimates of ground settlement have also been compared with analytical predictions. It is concluded that the GSI-RSM system can satisfactorily fulfill the SLS requirements.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":"42 1","pages":"265 - 278"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2023.2230063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Base isolation is a low-damage seismic design strategy that can be used for constructing resilient structures. Geotechnical seismic isolation (GSI) is a new category of emerging base isolation techniques that has attracted global interest in the past decade. Research on GSI based on rubber-soil mixtures (RSM) has focused on structural performance under earthquake actions, whilst there are concerns over the serviceability limit states (SLS) requirements in relation to (i) human comfort under strong winds and (ii) ground settlement under gravity, which may induce cracking and durability issues in structures. This article presents the first study on the serviceability performance of buildings constructed with the GSI-RSM system. The finite element model of a coupled soil-foundation-structure system has been validated by data recorded from geotechnical centrifuge testing. The numerical estimates of ground settlement have also been compared with analytical predictions. It is concluded that the GSI-RSM system can satisfactorily fulfill the SLS requirements.
土工隔震用橡胶-土混合料建筑物的使用性能
基础隔震是一种低损伤的抗震设计策略,可用于建造弹性结构。岩土隔震技术(GSI)是近十年来引起全球关注的一种新兴的基础隔震技术。基于橡胶-土壤混合物(RSM)的GSI研究主要集中在地震作用下的结构性能,同时关注与(i)强风下人体舒适度和(ii)重力作用下地面沉降相关的使用极限状态(SLS)要求,这可能导致结构开裂和耐久性问题。本文首次对采用GSI-RSM系统建造的建筑物的使用性能进行了研究。土-基础-结构耦合体系的有限元模型已通过土工离心试验数据得到验证。对地面沉降的数值估计也与分析预测进行了比较。结果表明,GSI-RSM系统能够满足SLS的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
31
期刊介绍: The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信