A Hierarchical Attention Retrieval Model for Healthcare Question Answering

Ming Zhu, Aman Ahuja, Wei Wei, C. Reddy
{"title":"A Hierarchical Attention Retrieval Model for Healthcare Question Answering","authors":"Ming Zhu, Aman Ahuja, Wei Wei, C. Reddy","doi":"10.1145/3308558.3313699","DOIUrl":null,"url":null,"abstract":"The growth of the Web in recent years has resulted in the development of various online platforms that provide healthcare information services. These platforms contain an enormous amount of information, which could be beneficial for a large number of people. However, navigating through such knowledgebases to answer specific queries of healthcare consumers is a challenging task. A majority of such queries might be non-factoid in nature, and hence, traditional keyword-based retrieval models do not work well for such cases. Furthermore, in many scenarios, it might be desirable to get a short answer that sufficiently answers the query, instead of a long document with only a small amount of useful information. In this paper, we propose a neural network model for ranking documents for question answering in the healthcare domain. The proposed model uses a deep attention mechanism at word, sentence, and document levels, for efficient retrieval for both factoid and non-factoid queries, on documents of varied lengths. Specifically, the word-level cross-attention allows the model to identify words that might be most relevant for a query, and the hierarchical attention at sentence and document levels allows it to do effective retrieval on both long and short documents. We also construct a new large-scale healthcare question-answering dataset, which we use to evaluate our model. Experimental evaluation results against several state-of-the-art baselines show that our model outperforms the existing retrieval techniques.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

The growth of the Web in recent years has resulted in the development of various online platforms that provide healthcare information services. These platforms contain an enormous amount of information, which could be beneficial for a large number of people. However, navigating through such knowledgebases to answer specific queries of healthcare consumers is a challenging task. A majority of such queries might be non-factoid in nature, and hence, traditional keyword-based retrieval models do not work well for such cases. Furthermore, in many scenarios, it might be desirable to get a short answer that sufficiently answers the query, instead of a long document with only a small amount of useful information. In this paper, we propose a neural network model for ranking documents for question answering in the healthcare domain. The proposed model uses a deep attention mechanism at word, sentence, and document levels, for efficient retrieval for both factoid and non-factoid queries, on documents of varied lengths. Specifically, the word-level cross-attention allows the model to identify words that might be most relevant for a query, and the hierarchical attention at sentence and document levels allows it to do effective retrieval on both long and short documents. We also construct a new large-scale healthcare question-answering dataset, which we use to evaluate our model. Experimental evaluation results against several state-of-the-art baselines show that our model outperforms the existing retrieval techniques.
医疗保健问答的分层注意检索模型
近年来网络的发展导致了各种提供医疗信息服务的在线平台的发展。这些平台包含了大量的信息,这可能对很多人有益。然而,通过这样的知识库来回答医疗保健消费者的特定查询是一项具有挑战性的任务。大多数此类查询本质上可能是非事实性的,因此,传统的基于关键字的检索模型不适用于此类情况。此外,在许多场景中,可能希望得到一个能够充分回答查询的简短答案,而不是一个只有少量有用信息的长文档。在本文中,我们提出了一种神经网络模型,用于对医疗保健领域的问答文档进行排序。提出的模型在单词、句子和文档级别上使用深度注意机制,以便在不同长度的文档上有效地检索事实和非事实查询。具体来说,单词级别的交叉注意允许模型识别可能与查询最相关的单词,句子和文档级别的分层注意允许它对长文档和短文档进行有效检索。我们还构建了一个新的大规模医疗保健问答数据集,我们使用它来评估我们的模型。针对几种最先进的基线的实验评估结果表明,我们的模型优于现有的检索技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信