Seed Assessment Using Fuzzy Logic and Gas Discharge Visualization Data

M. Arkhipov, E. Krueger, D. Kurtener, N. Priyatkin, A. Bondarenko
{"title":"Seed Assessment Using Fuzzy Logic and Gas Discharge Visualization Data","authors":"M. Arkhipov, E. Krueger, D. Kurtener, N. Priyatkin, A. Bondarenko","doi":"10.17830/J.EAJ.2014.01.124","DOIUrl":null,"url":null,"abstract":"Assessment of sowing material is a significant concern in seed science. A promising tool for assessing seed material is Corona Discharge Photography or Gas Discharge Visualization (GDV). In this study, this tool was applied to determine relationships between sowing material characteristics and GDV parameters; an Adaptive Neuro-Fuzzy Inference System (ANFIS) was utilized to interpret the experimental data. By using ANFIS, a three input fuzzy inference system was constructed to define the contiguous relations between GDV parameters (i.e., glow area and shape factor) and root length.","PeriodicalId":30775,"journal":{"name":"European Agrophysical Journal","volume":"42 1","pages":"124-133"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Agrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17830/J.EAJ.2014.01.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Assessment of sowing material is a significant concern in seed science. A promising tool for assessing seed material is Corona Discharge Photography or Gas Discharge Visualization (GDV). In this study, this tool was applied to determine relationships between sowing material characteristics and GDV parameters; an Adaptive Neuro-Fuzzy Inference System (ANFIS) was utilized to interpret the experimental data. By using ANFIS, a three input fuzzy inference system was constructed to define the contiguous relations between GDV parameters (i.e., glow area and shape factor) and root length.
基于模糊逻辑和气体排放可视化数据的种子评价
播种材料的评价是种子科学中一个重要的问题。电晕放电摄影或气体放电可视化(GDV)是评估种子材料的一个很有前途的工具。在本研究中,应用该工具确定播种材料特性与GDV参数之间的关系;采用自适应神经模糊推理系统(ANFIS)对实验数据进行解释。利用ANFIS构造了一个三输入模糊推理系统,定义了GDV参数(即发光面积和形状因子)与根长度之间的连续关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信