{"title":"Microwave-Assisted Improved Regioselective Synthesis of 12H-Benzopyrano[3,2-c][1]benzopyran-5-ones by Radical Cyclisation","authors":"P. K. Basu, Amrita Ghosh","doi":"10.1155/2011/394619","DOIUrl":null,"url":null,"abstract":"Two new effective methodologies have been adopted for the preparation of 4-(2′-bromobenzyloxy)benzopyran-7-ones 3(a–h). In the first methodology, 4-hydroxy[1]benzopyran-2-ones 1(a–d) was alkylated with 2-bromobenzyl bromide 2a or 2-bromo-5-methoxy benzyl bromide 2b under phase transfer catalysis condition using lithium hydroxide/tetrabutyl ammonium bromide in N,N-dimethylformamide at 40–50°C and in the second method the microwave irradiation protocol has been exploited by simply mixing of 4-hydroxy[1]benzopyran-2-ones 1(a–d) with 25% excess of 2-bromobenzyl bromide 2a or 2-bromo-5-methoxy benzyl bromide 2b. A catalytic amount of TBAB and potassium carbonate were added and irradiated in an open Erlenmeyer flask in a microwave oven for 4–10 min. The tributyltin-hydride-mediated radical cyclisation of 3(a–h) was carried out under microwave irradiation to generate 12H-benzopyrano[3,2-c][1]benzopyran-5-ones 4(a–h) in 78–88% yield and in this technique yields were significantly improved and reaction time was shortened compared to the previously reported conventional radical cyclisation method.","PeriodicalId":19688,"journal":{"name":"Organic Chemistry International","volume":"10 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/394619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Two new effective methodologies have been adopted for the preparation of 4-(2′-bromobenzyloxy)benzopyran-7-ones 3(a–h). In the first methodology, 4-hydroxy[1]benzopyran-2-ones 1(a–d) was alkylated with 2-bromobenzyl bromide 2a or 2-bromo-5-methoxy benzyl bromide 2b under phase transfer catalysis condition using lithium hydroxide/tetrabutyl ammonium bromide in N,N-dimethylformamide at 40–50°C and in the second method the microwave irradiation protocol has been exploited by simply mixing of 4-hydroxy[1]benzopyran-2-ones 1(a–d) with 25% excess of 2-bromobenzyl bromide 2a or 2-bromo-5-methoxy benzyl bromide 2b. A catalytic amount of TBAB and potassium carbonate were added and irradiated in an open Erlenmeyer flask in a microwave oven for 4–10 min. The tributyltin-hydride-mediated radical cyclisation of 3(a–h) was carried out under microwave irradiation to generate 12H-benzopyrano[3,2-c][1]benzopyran-5-ones 4(a–h) in 78–88% yield and in this technique yields were significantly improved and reaction time was shortened compared to the previously reported conventional radical cyclisation method.