Track Targets by Dense Spatio-Temporal Position Encoding

Jinkun Cao, Hao Wu, Kris Kitani
{"title":"Track Targets by Dense Spatio-Temporal Position Encoding","authors":"Jinkun Cao, Hao Wu, Kris Kitani","doi":"10.48550/arXiv.2210.09455","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel paradigm to encode the position of targets for target tracking in videos using transformers. The proposed paradigm, Dense Spatio-Temporal (DST) position encoding, encodes spatio-temporal position information in a pixel-wise dense fashion. The provided position encoding provides location information to associate targets across frames beyond appearance matching by comparing objects in two bounding boxes. Compared to the typical transformer positional encoding, our proposed encoding is applied to the 2D CNN features instead of the projected feature vectors to avoid losing positional information. Moreover, the designed DST encoding can represent the location of a single-frame object and the evolution of the location of the trajectory among frames uniformly. Integrated with the DST encoding, we build a transformer-based multi-object tracking model. The model takes a video clip as input and conducts the target association in the clip. It can also perform online inference by associating existing trajectories with objects from the new-coming frames. Experiments on video multi-object tracking (MOT) and multi-object tracking and segmentation (MOTS) datasets demonstrate the effectiveness of the proposed DST position encoding.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"8 1","pages":"311"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.09455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, we propose a novel paradigm to encode the position of targets for target tracking in videos using transformers. The proposed paradigm, Dense Spatio-Temporal (DST) position encoding, encodes spatio-temporal position information in a pixel-wise dense fashion. The provided position encoding provides location information to associate targets across frames beyond appearance matching by comparing objects in two bounding boxes. Compared to the typical transformer positional encoding, our proposed encoding is applied to the 2D CNN features instead of the projected feature vectors to avoid losing positional information. Moreover, the designed DST encoding can represent the location of a single-frame object and the evolution of the location of the trajectory among frames uniformly. Integrated with the DST encoding, we build a transformer-based multi-object tracking model. The model takes a video clip as input and conducts the target association in the clip. It can also perform online inference by associating existing trajectories with objects from the new-coming frames. Experiments on video multi-object tracking (MOT) and multi-object tracking and segmentation (MOTS) datasets demonstrate the effectiveness of the proposed DST position encoding.
基于密集时空位置编码的目标跟踪
在这项工作中,我们提出了一种新的范式来编码目标的位置,以便在视频中使用变压器进行目标跟踪。所提出的范式,密集时空(DST)位置编码,以逐像素的密集方式编码时空位置信息。所提供的位置编码提供位置信息,以便通过比较两个边界框中的对象来关联超越外观匹配的跨帧目标。与典型的变换位置编码相比,我们提出的编码方法是对二维CNN特征进行编码,而不是对投影特征向量进行编码,避免了位置信息的丢失。此外,所设计的DST编码可以均匀地表示单帧目标的位置和帧间轨迹位置的演变。结合DST编码,建立了基于变压器的多目标跟踪模型。该模型以视频片段为输入,在视频片段中进行目标关联。它还可以通过将现有轨迹与新帧中的对象相关联来执行在线推理。在视频多目标跟踪(MOT)和多目标跟踪与分割(MOTS)数据集上的实验证明了所提出的DST位置编码的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信