Embedded gold-plated fiber Bragg grating temperature and stress sensors encapsulated in capillary copper tube

Q3 Engineering
Z. Yanjun, Gao Haichuan, Zhang Longtu, Liu Qiang, Fu Xinghu
{"title":"Embedded gold-plated fiber Bragg grating temperature and stress sensors encapsulated in capillary copper tube","authors":"Z. Yanjun, Gao Haichuan, Zhang Longtu, Liu Qiang, Fu Xinghu","doi":"10.12086/OEE.2021.200195","DOIUrl":null,"url":null,"abstract":"In order to realize the non-destructive and real-time dynamic stress monitoring method of the construction machinery surface in complex and harsh environments, a fiber Bragg grating (FBG) stress sensor packaging method based on magnetron sputtering technology is proposed. Two packaging methods of complete embedding (the capillary copper tube embedded in the entire grating area) and two sides embedding (capillary copper tube nested at both ends of the grating area) are studied. The sensitization effect of the sensor is analyzed from the perspective of theory and finite element, and the results are consistent. The physical sensors are made, and temperature, stress, and comparison experiments are carried out. Simulation and experiment show that the FBG sensor improves the sensitivity by about 7.5% under this model. The temperature experiment shows that the temperature feedback correlation coefficient R2 of the second package structure reaches 0.99948, which shows good linearity in the range of 30 ℃80 ℃; the stress experiment correlation coefficient R2 also reaches 0.99924, and the sensitivity is 6.14 pm/MPa. The accuracy of demodulation system reaches 0.05 MPa, it can demodulate stress quickly and accurately. Comparative experiments show that the monitoring system composed of grating demodulator has higher accuracy than the monitoring system composed of strain gauges, and maximum deviation value smaller 59.8%. The packaging structure of metallization method of embedded capillary copper tube combined with organic glue fixed is simple, high sensitivity, and precision, can meet the needs of large-scale construction machinery surface non-destructive real-time health monitoring.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

In order to realize the non-destructive and real-time dynamic stress monitoring method of the construction machinery surface in complex and harsh environments, a fiber Bragg grating (FBG) stress sensor packaging method based on magnetron sputtering technology is proposed. Two packaging methods of complete embedding (the capillary copper tube embedded in the entire grating area) and two sides embedding (capillary copper tube nested at both ends of the grating area) are studied. The sensitization effect of the sensor is analyzed from the perspective of theory and finite element, and the results are consistent. The physical sensors are made, and temperature, stress, and comparison experiments are carried out. Simulation and experiment show that the FBG sensor improves the sensitivity by about 7.5% under this model. The temperature experiment shows that the temperature feedback correlation coefficient R2 of the second package structure reaches 0.99948, which shows good linearity in the range of 30 ℃80 ℃; the stress experiment correlation coefficient R2 also reaches 0.99924, and the sensitivity is 6.14 pm/MPa. The accuracy of demodulation system reaches 0.05 MPa, it can demodulate stress quickly and accurately. Comparative experiments show that the monitoring system composed of grating demodulator has higher accuracy than the monitoring system composed of strain gauges, and maximum deviation value smaller 59.8%. The packaging structure of metallization method of embedded capillary copper tube combined with organic glue fixed is simple, high sensitivity, and precision, can meet the needs of large-scale construction machinery surface non-destructive real-time health monitoring.
嵌入式镀金光纤光栅温度和应力传感器封装在毛细管铜管
为了实现工程机械表面在复杂恶劣环境下的无损实时动态应力监测方法,提出了一种基于磁控溅射技术的光纤布拉格光栅(FBG)应力传感器封装方法。研究了完全埋入(毛细管铜管埋入整个光栅区域)和双面埋入(毛细管铜管埋入光栅区域两端)两种封装方法。从理论和有限元的角度分析了传感器的增感效果,结果是一致的。制作了物理传感器,并进行了温度、应力和对比实验。仿真和实验表明,在该模型下,光纤光栅传感器的灵敏度提高了约7.5%。温度实验表明,第二封装结构的温度反馈相关系数R2达到0.99948,在30℃80℃范围内线性良好;应力实验相关系数R2也达到0.99924,灵敏度为6.14 pm/MPa。解调系统的解调精度达到0.05 MPa,能快速准确地解调应力。对比实验表明,由光栅解调器组成的监测系统比由应变片组成的监测系统精度更高,最大偏差值小59.8%。采用埋入式毛细管铜管结合有机胶固定的金属化封装结构方法简单、灵敏度高、精度高,可满足大型工程机械表面无损实时健康监测的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信