Higher-Order Skolem’s Paradoxes and the Practice of Mathematics: a Note

IF 0.1 Q3 Arts and Humanities
Davood Hosseini, Mansooreh Kimiagari
{"title":"Higher-Order Skolem’s Paradoxes and the Practice of Mathematics: a Note","authors":"Davood Hosseini, Mansooreh Kimiagari","doi":"10.2478/disp-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract We will formulate some analogous higher-order versions of Skolem’s paradox and assess the generalizability of two solutions for Skolem’s paradox to these paradoxes: the textbook approach and that of Bays (2000). We argue that the textbook approach to handle Skolem’s paradox cannot be generalized to solve the parallel higher-order paradoxes, unless it is augmented by the claim that there is no unique language within which the practice of mathematics can be formalized. Then, we argue that Bays’ solution to the original Skolem’s paradox, unlike the textbook solution, can be generalized to solve the higher-order paradoxes without any implication about the possibility or order of a language in which mathematical practice is to be formalized.","PeriodicalId":52369,"journal":{"name":"Disputatio (Spain)","volume":"4 1","pages":"41 - 49"},"PeriodicalIF":0.1000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disputatio (Spain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/disp-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We will formulate some analogous higher-order versions of Skolem’s paradox and assess the generalizability of two solutions for Skolem’s paradox to these paradoxes: the textbook approach and that of Bays (2000). We argue that the textbook approach to handle Skolem’s paradox cannot be generalized to solve the parallel higher-order paradoxes, unless it is augmented by the claim that there is no unique language within which the practice of mathematics can be formalized. Then, we argue that Bays’ solution to the original Skolem’s paradox, unlike the textbook solution, can be generalized to solve the higher-order paradoxes without any implication about the possibility or order of a language in which mathematical practice is to be formalized.
高阶Skolem悖论与数学实践:注
我们将阐述Skolem悖论的一些类似的高阶版本,并评估Skolem悖论的两种解决方案对这些悖论的可泛化性:教科书方法和Bays(2000)的方法。我们认为,处理Skolem悖论的教科书方法不能推广到解决平行的高阶悖论,除非通过声称没有唯一的语言可以形式化数学实践来增强它。然后,我们认为,与教科书的解决方案不同,贝斯对原始Skolem悖论的解决方案可以推广到解决高阶悖论,而不涉及数学实践被形式化的语言的可能性或顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Disputatio (Spain)
Disputatio (Spain) Arts and Humanities-Philosophy
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
35 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信