Neural Monte Carlo renormalization group

Jui-Hui Chung, Y. Kao
{"title":"Neural Monte Carlo renormalization group","authors":"Jui-Hui Chung, Y. Kao","doi":"10.1103/PhysRevResearch.3.023230","DOIUrl":null,"url":null,"abstract":"The key idea behind the renormalization group (RG) transformation is that properties of physical systems with very different microscopic makeups can be characterized by a few universal parameters. However, finding the optimal RG transformation remains difficult due to the many possible choices of the weight factors in the RG procedure. Here we show, by identifying the conditional distribution in the restricted Boltzmann machine (RBM) and the weight factor distribution in the RG procedure, an optimal real-space RG transformation can be learned without prior knowledge of the physical system. This neural Monte Carlo RG algorithm allows for direct computation of the RG flow and critical exponents. This scheme naturally generates a transformation that maximizes the real-space mutual information between the coarse-grained region and the environment. Our results establish a solid connection between the RG transformation in physics and the deep architecture in machine learning, paving the way to further interdisciplinary research.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevResearch.3.023230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The key idea behind the renormalization group (RG) transformation is that properties of physical systems with very different microscopic makeups can be characterized by a few universal parameters. However, finding the optimal RG transformation remains difficult due to the many possible choices of the weight factors in the RG procedure. Here we show, by identifying the conditional distribution in the restricted Boltzmann machine (RBM) and the weight factor distribution in the RG procedure, an optimal real-space RG transformation can be learned without prior knowledge of the physical system. This neural Monte Carlo RG algorithm allows for direct computation of the RG flow and critical exponents. This scheme naturally generates a transformation that maximizes the real-space mutual information between the coarse-grained region and the environment. Our results establish a solid connection between the RG transformation in physics and the deep architecture in machine learning, paving the way to further interdisciplinary research.
神经蒙特卡罗重整化群
重整化群(RG)变换背后的关键思想是,具有非常不同微观组成的物理系统的性质可以用几个通用参数来表征。然而,由于在RG过程中有许多可能选择的权重因子,找到最优的RG变换仍然很困难。本文表明,通过识别受限玻尔兹曼机(RBM)中的条件分布和RG过程中的权重因子分布,可以在没有物理系统先验知识的情况下学习到最优的实空间RG变换。这种神经蒙特卡罗RG算法允许直接计算RG流和临界指数。这种方案自然地产生了一种转换,使粗粒度区域和环境之间的实空间互信息最大化。我们的研究结果在物理学中的RG转换和机器学习中的深层架构之间建立了坚实的联系,为进一步的跨学科研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信