M. Trajkovic, Xi Zhang, F. Blache, K. Mekhazni, M. Matters-Kammerer, H. Debrégeas, X. Leijtens, K. Williams
{"title":"36 Gb/s operation of a BiCMOS driver and InP EAM using foundry platforms","authors":"M. Trajkovic, Xi Zhang, F. Blache, K. Mekhazni, M. Matters-Kammerer, H. Debrégeas, X. Leijtens, K. Williams","doi":"10.1049/CP.2019.1081","DOIUrl":null,"url":null,"abstract":"We demonstrate a clear eye-diagram at 36 Gb/s of a BiCMOS driver directly wire-bonded to an InP electro-absorption modulator (EAM) both fabricated through foundry platforms. The driver is fabricated in a 0.25 μm SiGe:C BiCMOS technology and delivers a maximum of 2 Vp-p amplitude when single-ended. The driver is DC-coupled to the modulator, simplifying the electronic-photonic assembly. The EAM operates in the L-band at 1590 nm, with a DC bias set at –1.6 V for on-off keying non-return to zero modulation. We measure the operation from 10 to 40 Gb/s, recording the dynamic extinction ratio from 5 to 3 dB, respectively. The use of foundry platforms does not require any fabrication process change and offers a wide spectrum of high-performance photonic-electronic integrated circuits.","PeriodicalId":6826,"journal":{"name":"45th European Conference on Optical Communication (ECOC 2019)","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"45th European Conference on Optical Communication (ECOC 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/CP.2019.1081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We demonstrate a clear eye-diagram at 36 Gb/s of a BiCMOS driver directly wire-bonded to an InP electro-absorption modulator (EAM) both fabricated through foundry platforms. The driver is fabricated in a 0.25 μm SiGe:C BiCMOS technology and delivers a maximum of 2 Vp-p amplitude when single-ended. The driver is DC-coupled to the modulator, simplifying the electronic-photonic assembly. The EAM operates in the L-band at 1590 nm, with a DC bias set at –1.6 V for on-off keying non-return to zero modulation. We measure the operation from 10 to 40 Gb/s, recording the dynamic extinction ratio from 5 to 3 dB, respectively. The use of foundry platforms does not require any fabrication process change and offers a wide spectrum of high-performance photonic-electronic integrated circuits.