The local-global property for G-invariant terms

Alexandr Kazda, M. Kompatscher
{"title":"The local-global property for G-invariant terms","authors":"Alexandr Kazda, M. Kompatscher","doi":"10.1142/s0218196722500527","DOIUrl":null,"url":null,"abstract":"For some Maltsev conditions Σ it is enough to check if a finite algebra A satisfies Σ locally on subsets of bounded size, in order to decide, whether A satisfies Σ (globally). This local-global property is the main known source of tractability results for deciding Maltsev conditions. In this paper we investigate the local-global property for the existence of a G-term, i.e. an n-ary term that is invariant under permuting its variables according to a permutation group G ≤ Sym(n). Our results imply in particular that all cyclic loop conditions (in the sense of Bodirsky, Starke, and Vucaj) have the local-global property (and thus can be decided in polynomial time), while symmetric terms of arity n > 2 fail to have it.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"96 1","pages":"1209-1231"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For some Maltsev conditions Σ it is enough to check if a finite algebra A satisfies Σ locally on subsets of bounded size, in order to decide, whether A satisfies Σ (globally). This local-global property is the main known source of tractability results for deciding Maltsev conditions. In this paper we investigate the local-global property for the existence of a G-term, i.e. an n-ary term that is invariant under permuting its variables according to a permutation group G ≤ Sym(n). Our results imply in particular that all cyclic loop conditions (in the sense of Bodirsky, Starke, and Vucaj) have the local-global property (and thus can be decided in polynomial time), while symmetric terms of arity n > 2 fail to have it.
g不变项的局部-全局性质
对于某些Maltsev条件Σ,为了确定a是否满足Σ(全局),只需检查有限代数a是否在有限大小的子集上局部满足Σ就足够了。这种局部-全局性质是确定马尔采夫条件的可追溯性结果的主要已知来源。本文研究了一类n元项在按置换群G≤Sym(n)置换其变量时不变的存在性的局部-全局性质。我们的结果特别暗示所有循环循环条件(在Bodirsky, Starke和Vucaj的意义上)具有局部全局性质(因此可以在多项式时间内确定),而对称性项n > 2则不具有它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信