Multicast Beamforming Using Semidefinite Relaxation and Bounded Perturbation Resilience

Jochen Fink, R. Cavalcante, S. Stańczak
{"title":"Multicast Beamforming Using Semidefinite Relaxation and Bounded Perturbation Resilience","authors":"Jochen Fink, R. Cavalcante, S. Stańczak","doi":"10.1109/ICASSP.2019.8682325","DOIUrl":null,"url":null,"abstract":"Semidefinite relaxation followed by randomization is a well-known approach for approximating a solution to the NP-hard max-min fair multicast beamforming problem. While providing a good approximation to the optimal solution, this approach commonly involves the use of computationally demanding interior point methods. In this study, we propose a solution based on superiorization of bounded perturbation resilient iterative operators that scales to systems with a large number of antennas. We show that this method outperforms the randomization techniques in many cases, while using only computationally simple operations.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"75 1","pages":"4749-4753"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Semidefinite relaxation followed by randomization is a well-known approach for approximating a solution to the NP-hard max-min fair multicast beamforming problem. While providing a good approximation to the optimal solution, this approach commonly involves the use of computationally demanding interior point methods. In this study, we propose a solution based on superiorization of bounded perturbation resilient iterative operators that scales to systems with a large number of antennas. We show that this method outperforms the randomization techniques in many cases, while using only computationally simple operations.
基于半定松弛和有界扰动弹性的组播波束形成
随机化后的半定松弛是解决NP-hard最大最小公平组播波束形成问题的一种众所周知的方法。虽然提供了对最优解的良好近似,但这种方法通常涉及使用计算要求很高的内点法。在这项研究中,我们提出了一种基于有界微扰弹性迭代算子的优越化解决方案,该方案适用于具有大量天线的系统。我们表明,这种方法在许多情况下优于随机化技术,而只使用计算简单的操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信