A location-aware hybrid web service QoS prediction algorithm

Q4 Computer Science
Hai-hong E, Jun-jie TONG, Mei-na SONG, Jun-de SONG
{"title":"A location-aware hybrid web service QoS prediction algorithm","authors":"Hai-hong E,&nbsp;Jun-jie TONG,&nbsp;Mei-na SONG,&nbsp;Jun-de SONG","doi":"10.1016/S1005-8885(14)60515-X","DOIUrl":null,"url":null,"abstract":"<div><p>Quality-of-service (QoS) describes the non-functional characteristics of Web services. As such, the QoS is a critical parameter in service selection, composition and fault tolerance, and must be accurately determined by some type of QoS prediction method. However, with the dramatic increase in the number of Web services, the prediction failure caused by data sparseness has become a critical challenge. In this paper, a new hybrid user-location-aware prediction based on WAA (HUWAA) is proposed. The implicit neighbor search is optimized by incorporating location factors. Meanwhile, the ability of the improved algorithms to solve the data sparsity problem is validated in experiments on public real world datasets. The new algorithms outperform the existing IPCC, UPCC and WSRec algorithms.</p></div>","PeriodicalId":35359,"journal":{"name":"Journal of China Universities of Posts and Telecommunications","volume":"21 ","pages":"Pages 34-40"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1005-8885(14)60515-X","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of China Universities of Posts and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100588851460515X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

Quality-of-service (QoS) describes the non-functional characteristics of Web services. As such, the QoS is a critical parameter in service selection, composition and fault tolerance, and must be accurately determined by some type of QoS prediction method. However, with the dramatic increase in the number of Web services, the prediction failure caused by data sparseness has become a critical challenge. In this paper, a new hybrid user-location-aware prediction based on WAA (HUWAA) is proposed. The implicit neighbor search is optimized by incorporating location factors. Meanwhile, the ability of the improved algorithms to solve the data sparsity problem is validated in experiments on public real world datasets. The new algorithms outperform the existing IPCC, UPCC and WSRec algorithms.

一种位置感知混合web服务QoS预测算法
服务质量(QoS)描述了Web服务的非功能特征。因此,QoS是服务选择、组合和容错的关键参数,必须通过某种类型的QoS预测方法来准确确定。然而,随着Web服务数量的急剧增加,由数据稀疏性引起的预测失败已经成为一个严峻的挑战。提出了一种基于WAA的混合用户位置感知预测方法(HUWAA)。隐式邻居搜索通过结合位置因素进行优化。同时,在公开的真实数据集上进行了实验,验证了改进算法解决数据稀疏性问题的能力。新算法优于现有的IPCC、UPCC和WSRec算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
1878
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信