O. Chamsi, E. Pinelli, Bruno Faucon, Annie Perrault, L. Lacroix, J. Sánchez-Pérez, J. Charcosset
{"title":"Effects of herbicide mixtures on freshwater microalgae with the potential effect of a safener","authors":"O. Chamsi, E. Pinelli, Bruno Faucon, Annie Perrault, L. Lacroix, J. Sánchez-Pérez, J. Charcosset","doi":"10.1051/LIMN/2019002","DOIUrl":null,"url":null,"abstract":"Freshwater microalgae are primary producers and cosmopolitan species subjected to the effects of herbicides. In this work, the in vitro algal growth inhibitory effects of 11 agrochemicals (9 herbicides, 1 metabolite, and 1 safener) were quantified. Chemical compounds were applied singly and in specific mixtures. Three species were used in axenic condition: the green alga Desmodesmus subspicatus (Chodat), the diatoms Nitzschia palea (Kützing) W. Smith and Navicula pelliculosa (Kützing) Hilse. When exposed to single compounds, N. palea and N. pelliculosa were only sensitive to atrazine/desethylatrazine and the safener benoxacor (BE), respectively. D. subspicatus was equally sensitive to four herbicides including atrazine and its metabolite and significantly more sensitive to iodosulfuron-methyl-sodium (IODO). The mixture of these five compounds induced a significantly higher growth inhibition of about 1.5-fold than IODO alone, which could be attributed to the four other herbicides. The mixture of all compounds was twofold less toxic than IODO on D. subspicatus. A halogen atom is present in IODO as in the herbicides to which the safener BE − known to induce glutathione-S-transferases − is associated in agrochemical preparations. We then showed that IODO was less toxic when combined with non-toxic concentrations of BE. These results indicated that the toxicity of the most active herbicide studied was decreased by a non-herbicide compound present in agrochemical formulations of other herbicides. These results suggest the importance to take into account the chemistry and the mechanisms of action for each compound in a risk assessment approach of a complex mixture.","PeriodicalId":7903,"journal":{"name":"Annales De Limnologie-international Journal of Limnology","volume":"47 3 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Limnologie-international Journal of Limnology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1051/LIMN/2019002","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 13
Abstract
Freshwater microalgae are primary producers and cosmopolitan species subjected to the effects of herbicides. In this work, the in vitro algal growth inhibitory effects of 11 agrochemicals (9 herbicides, 1 metabolite, and 1 safener) were quantified. Chemical compounds were applied singly and in specific mixtures. Three species were used in axenic condition: the green alga Desmodesmus subspicatus (Chodat), the diatoms Nitzschia palea (Kützing) W. Smith and Navicula pelliculosa (Kützing) Hilse. When exposed to single compounds, N. palea and N. pelliculosa were only sensitive to atrazine/desethylatrazine and the safener benoxacor (BE), respectively. D. subspicatus was equally sensitive to four herbicides including atrazine and its metabolite and significantly more sensitive to iodosulfuron-methyl-sodium (IODO). The mixture of these five compounds induced a significantly higher growth inhibition of about 1.5-fold than IODO alone, which could be attributed to the four other herbicides. The mixture of all compounds was twofold less toxic than IODO on D. subspicatus. A halogen atom is present in IODO as in the herbicides to which the safener BE − known to induce glutathione-S-transferases − is associated in agrochemical preparations. We then showed that IODO was less toxic when combined with non-toxic concentrations of BE. These results indicated that the toxicity of the most active herbicide studied was decreased by a non-herbicide compound present in agrochemical formulations of other herbicides. These results suggest the importance to take into account the chemistry and the mechanisms of action for each compound in a risk assessment approach of a complex mixture.
期刊介绍:
Annales de Limnologie - International Journal of Limnology publishes papers on the ecology of freshwater systems, ranging from studies of aquatic organisms, physical and chemical works which relate to the biological environment, to ecological applications and frameworks for water management directives.
Main topics: Ecology of freshwater systems ; biodiversity, taxonomy, distribution patterns in space and time, biology of animals and plants ; experimental and conceptual studies which integrate laboratory and/or field work on physiology, population dynamics, biogeochemistry and nutrient dynamics, management, mathematical modelling ; techniques for sampling and chemical analyses, ecological applications, procedures which provide frameworks for environmental legislation.