A Classifier to Decide on the Linearization of Mixed-Integer Quadratic Problems in CPLEX

Oper. Res. Pub Date : 2022-04-05 DOI:10.1287/opre.2022.2267
Pierre Bonami, Andrea Lodi, Giulia Zarpellon
{"title":"A Classifier to Decide on the Linearization of Mixed-Integer Quadratic Problems in CPLEX","authors":"Pierre Bonami, Andrea Lodi, Giulia Zarpellon","doi":"10.1287/opre.2022.2267","DOIUrl":null,"url":null,"abstract":"Despite modern solvers being able to tackle mixed-integer quadratic programming problems (MIQPs) for several years, the theoretical and computational implications of the employed resolution techniques are not fully grasped yet. An interesting question concerns the choice of whether to linearize the quadratic part of a convex MIQP: although in theory no approach dominates the other, the decision is typically performed during the preprocessing phase and can thus substantially condition the downstream performance of the solver. In “A Classifier to Decide on the Linearization of Mixed-Integer Quadratic Problems in CPLEX,” Bonami, Lodi, and Zarpellon use machine learning (ML) to cast a prediction on this algorithmic choice. The whole experimental framework aims at integrating optimization knowledge in the learning pipeline and contributes a general methodology for using ML in MIP technology. The workflow is fine-tuned to enable online predictions in the IBM-CPLEX solver ecosystem, and, as a practical result, a classifier deciding on MIQP linearization is successfully deployed in CPLEX 12.10.0.","PeriodicalId":19546,"journal":{"name":"Oper. Res.","volume":"34 1","pages":"3303-3320"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/opre.2022.2267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Despite modern solvers being able to tackle mixed-integer quadratic programming problems (MIQPs) for several years, the theoretical and computational implications of the employed resolution techniques are not fully grasped yet. An interesting question concerns the choice of whether to linearize the quadratic part of a convex MIQP: although in theory no approach dominates the other, the decision is typically performed during the preprocessing phase and can thus substantially condition the downstream performance of the solver. In “A Classifier to Decide on the Linearization of Mixed-Integer Quadratic Problems in CPLEX,” Bonami, Lodi, and Zarpellon use machine learning (ML) to cast a prediction on this algorithmic choice. The whole experimental framework aims at integrating optimization knowledge in the learning pipeline and contributes a general methodology for using ML in MIP technology. The workflow is fine-tuned to enable online predictions in the IBM-CPLEX solver ecosystem, and, as a practical result, a classifier deciding on MIQP linearization is successfully deployed in CPLEX 12.10.0.
一种判定CPLEX中混合整数二次问题线性化的分类器
尽管现代求解器已经能够解决混合整数二次规划问题(MIQPs)好几年了,但所采用的解决技术的理论和计算含义尚未完全掌握。一个有趣的问题涉及到是否对凸MIQP的二次部分进行线性化的选择:尽管理论上没有一种方法优于另一种方法,但该决定通常是在预处理阶段执行的,因此可以实质上限制求解器的下游性能。在“决定CPLEX中混合整数二次问题线性化的分类器”中,Bonami, Lodi和Zarpellon使用机器学习(ML)对这种算法选择进行预测。整个实验框架旨在将优化知识整合到学习管道中,并为在MIP技术中使用ML提供了一个通用的方法。工作流程经过微调,可以在IBM-CPLEX求解器生态系统中进行在线预测,并且作为实际结果,在CPLEX 12.10.0中成功部署了决定MIQP线性化的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信