Nicholas Jing Yuan, Yuan Zhong, Fuzheng Zhang, Xing Xie, Chin-Yew Lin, Y. Rui
{"title":"Who Will Reply to/Retweet This Tweet?: The Dynamics of Intimacy from Online Social Interactions","authors":"Nicholas Jing Yuan, Yuan Zhong, Fuzheng Zhang, Xing Xie, Chin-Yew Lin, Y. Rui","doi":"10.1145/2835776.2835800","DOIUrl":null,"url":null,"abstract":"Friendships are dynamic. Previous studies have converged to suggest that social interactions, in both online and offline social networks, are diagnostic reflections of friendship relations (also called social ties). However, most existing approaches consider a social tie as either a binary relation, or a fixed value (named tie strength). In this paper, we investigate the dynamics of dyadic friend relationships through online social interactions, in terms of a variety of aspects, such as reciprocity, temporality, and contextuality. In turn, we propose a model to predict repliers and retweeters given a particular tweet posted at a certain time in a microblog-based social network. More specifically, we have devised a learning-to-rank approach to train a ranker that considers elaborate user-level and tweet-level features (like sentiment, self-disclosure, and responsiveness) to address these dynamics. In the prediction phase, a tweet posted by a user is deemed a query and the predicted repliers/retweeters are retrieved using the learned ranker. We have collected a large dataset containing 73.3 million dyadic relationships with their interactions (replies and retweets). Extensive experimental results based on this dataset show that by incorporating the dynamics of friendship relations, our approach significantly outperforms state-of-the-art models in terms of multiple evaluation metrics, such as MAP, NDCG and Topmost Accuracy. In particular, the advantage of our model is even more promising in predicting the exact sequence of repliers/retweeters considering their orders. Furthermore, the proposed approach provides emerging implications for many high-value applications in online social networks.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"157 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
Friendships are dynamic. Previous studies have converged to suggest that social interactions, in both online and offline social networks, are diagnostic reflections of friendship relations (also called social ties). However, most existing approaches consider a social tie as either a binary relation, or a fixed value (named tie strength). In this paper, we investigate the dynamics of dyadic friend relationships through online social interactions, in terms of a variety of aspects, such as reciprocity, temporality, and contextuality. In turn, we propose a model to predict repliers and retweeters given a particular tweet posted at a certain time in a microblog-based social network. More specifically, we have devised a learning-to-rank approach to train a ranker that considers elaborate user-level and tweet-level features (like sentiment, self-disclosure, and responsiveness) to address these dynamics. In the prediction phase, a tweet posted by a user is deemed a query and the predicted repliers/retweeters are retrieved using the learned ranker. We have collected a large dataset containing 73.3 million dyadic relationships with their interactions (replies and retweets). Extensive experimental results based on this dataset show that by incorporating the dynamics of friendship relations, our approach significantly outperforms state-of-the-art models in terms of multiple evaluation metrics, such as MAP, NDCG and Topmost Accuracy. In particular, the advantage of our model is even more promising in predicting the exact sequence of repliers/retweeters considering their orders. Furthermore, the proposed approach provides emerging implications for many high-value applications in online social networks.