Prediction of F0 contours from symbolic and numerical variables using continuous conditional random fields

Raul Fernandez, Steve Minnis, B. Ramabhadran
{"title":"Prediction of F0 contours from symbolic and numerical variables using continuous conditional random fields","authors":"Raul Fernandez, Steve Minnis, B. Ramabhadran","doi":"10.1109/ICASSP.2012.6288948","DOIUrl":null,"url":null,"abstract":"Regression of continuous-valued variables as a function of both categorical and continuous predictors arises in some areas of speech processing, such as when predicting prosodic targets in a text-to-speech system. In this work we investigate the use of Continuous Conditional Random Fields (CCRF) to conditionally predict F0 targets from a series of s symbolic and numerical predictive features derived from text. We derive the training equations for the model using a Least-Squares-Error criterion within a supervised framework, and evaluate the proposed system using this objective criterion against other baseline models that can handle mixed inputs, such as regression trees and ensemble of regression trees.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regression of continuous-valued variables as a function of both categorical and continuous predictors arises in some areas of speech processing, such as when predicting prosodic targets in a text-to-speech system. In this work we investigate the use of Continuous Conditional Random Fields (CCRF) to conditionally predict F0 targets from a series of s symbolic and numerical predictive features derived from text. We derive the training equations for the model using a Least-Squares-Error criterion within a supervised framework, and evaluate the proposed system using this objective criterion against other baseline models that can handle mixed inputs, such as regression trees and ensemble of regression trees.
使用连续条件随机场从符号和数值变量预测F0轮廓
连续值变量的回归作为分类和连续预测器的函数出现在语音处理的某些领域,例如在文本到语音系统中预测韵律目标。在这项工作中,我们研究了使用连续条件随机场(CCRF)从一系列来自文本的5个符号和数值预测特征中有条件地预测F0目标。我们在监督框架内使用最小二乘误差标准推导出模型的训练方程,并使用该客观标准对可以处理混合输入的其他基线模型(如回归树和回归树集合)进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信