Kinetic Monte Carlo study of accelerated optimization problem search using Bose-Einstein condensates

K. Yan, T. Byrnes, Y. Yamamoto
{"title":"Kinetic Monte Carlo study of accelerated optimization problem search using Bose-Einstein condensates","authors":"K. Yan, T. Byrnes, Y. Yamamoto","doi":"10.2201/NIIPI.2011.8.5","DOIUrl":null,"url":null,"abstract":"In a previous work [ArXiv:0909.2530] we proposed a method for accelerating optimization problem search using Bose-Einstein condensation (BEC). The system encodes an optimization problem into an Ising model and cools it down by the process of BEC to find its ground state spin configuration which corresponds to the solution of the problem. The system uses the final state stimulation (FSS) property of bosonic particles, an effect originating from the quantum indistinguishability of bosons, to provide speedups over the classical case. The speedup is typically ∝ N, where N is the number of bosons in the system per site. In this article we firstly review the proposed system, and give a more detailed numerical study of the equilibration time with the boson number and the number of sites M in the Ising model. We find that the equilibration time scales as τ ∼ exp(M)/N in agreement with previous arguments based on simulated annealing. A detailed description of the kinetic Monte Carlo method used for the study of the proposed system is also discussed.","PeriodicalId":91638,"journal":{"name":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","volume":"3 1","pages":"39"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2201/NIIPI.2011.8.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In a previous work [ArXiv:0909.2530] we proposed a method for accelerating optimization problem search using Bose-Einstein condensation (BEC). The system encodes an optimization problem into an Ising model and cools it down by the process of BEC to find its ground state spin configuration which corresponds to the solution of the problem. The system uses the final state stimulation (FSS) property of bosonic particles, an effect originating from the quantum indistinguishability of bosons, to provide speedups over the classical case. The speedup is typically ∝ N, where N is the number of bosons in the system per site. In this article we firstly review the proposed system, and give a more detailed numerical study of the equilibration time with the boson number and the number of sites M in the Ising model. We find that the equilibration time scales as τ ∼ exp(M)/N in agreement with previous arguments based on simulated annealing. A detailed description of the kinetic Monte Carlo method used for the study of the proposed system is also discussed.
利用玻色-爱因斯坦凝聚体加速优化问题搜索的动力学蒙特卡罗研究
在先前的研究[ArXiv:0909.2530]中,我们提出了一种利用玻色-爱因斯坦凝聚(BEC)加速优化问题搜索的方法。该系统将优化问题编码到Ising模型中,并通过BEC过程对其进行冷却,从而找到与问题解对应的基态自旋组态。该系统利用玻色子粒子的最终状态刺激(FSS)特性,一种源于玻色子的量子不可区分性的效应,来提供比经典情况下更快的速度。加速通常为∝N,其中N是系统中每个位点的玻色子数。在本文中,我们首先回顾了所提出的系统,并在Ising模型中对平衡时间与玻色子数和位数M的关系进行了更详细的数值研究。我们发现平衡时间尺度为τ ~ exp(M)/N,与先前基于模拟退火的论点一致。详细描述了动力学蒙特卡罗方法用于研究所提出的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信