{"title":"External heavy-atom effect on fluorescence kinetics","authors":"M. Santos","doi":"10.1039/B002307H","DOIUrl":null,"url":null,"abstract":"Fluorescence quenching in fluid solution by the external heavy-atom effect usually follows simple Stern?Volmer kinetics, and the quenching effect is gauged by the magnitude of the bimolecular quenching rate constant. However, it is the increased unimolecular S1→Tn intersystem crossing rate constant of the perturbed fluorophore in the perturber?fluorophore complex that can be directly compared with that of the unperturbed fluorophore. From a simple model for external heavy atom quenching in fluid solution, the decay law is predicted to be singly exponential for all quencher concentrations, and a new expression for the unimolecular S1→Tn intersystem crossing rate constant of the perturbed fluorophore is obtained. The same problem, but in rigid solution, is also discussed for the first time. The model now predicts a nonexponential fluorescence decay law, from which the unimolecular S1→Tn intersystem crossing rate constant of the perturbed fluorophore can be directly determined.","PeriodicalId":20106,"journal":{"name":"PhysChemComm","volume":"68 1","pages":"18-23"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhysChemComm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/B002307H","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Fluorescence quenching in fluid solution by the external heavy-atom effect usually follows simple Stern?Volmer kinetics, and the quenching effect is gauged by the magnitude of the bimolecular quenching rate constant. However, it is the increased unimolecular S1→Tn intersystem crossing rate constant of the perturbed fluorophore in the perturber?fluorophore complex that can be directly compared with that of the unperturbed fluorophore. From a simple model for external heavy atom quenching in fluid solution, the decay law is predicted to be singly exponential for all quencher concentrations, and a new expression for the unimolecular S1→Tn intersystem crossing rate constant of the perturbed fluorophore is obtained. The same problem, but in rigid solution, is also discussed for the first time. The model now predicts a nonexponential fluorescence decay law, from which the unimolecular S1→Tn intersystem crossing rate constant of the perturbed fluorophore can be directly determined.