Traffic Intersections as Agents: A model checking approach for analysing communicating agents

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Thamilselvam B, Y. Ramesh, S. Kalyanasundaram, M. Rao
{"title":"Traffic Intersections as Agents: A model checking approach for analysing communicating agents","authors":"Thamilselvam B, Y. Ramesh, S. Kalyanasundaram, M. Rao","doi":"10.1145/3555776.3577720","DOIUrl":null,"url":null,"abstract":"The analysis of traffic policies, for instance, the duration of green and red phases at intersections, can be quite challenging. While the introduction of communication systems can potentially lead to better solutions, it is important to analyse and formulate policies in the presence of potential communication failures and delays. Given the stochastic nature of traffic, posing the problem as a model checking problem in probabilistic epistemic temporal logic seems promising. In this work, we propose an approach that uses epistemic modalities to model the effect of communication between multiple intersections and temporal modalities to model the progression of traffic volumes over time. We validate our approach in a non-stochastic setting, using the tool Model Checker for Multi-Agent Systems (MCMAS). We develop a Statistical Model Checking module and use it in conjunction with a tool chain that integrates a traffic simulator (SUMO) and a network simulator (OMNeT++/Veins) to study the impact of communications on traffic policies.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of traffic policies, for instance, the duration of green and red phases at intersections, can be quite challenging. While the introduction of communication systems can potentially lead to better solutions, it is important to analyse and formulate policies in the presence of potential communication failures and delays. Given the stochastic nature of traffic, posing the problem as a model checking problem in probabilistic epistemic temporal logic seems promising. In this work, we propose an approach that uses epistemic modalities to model the effect of communication between multiple intersections and temporal modalities to model the progression of traffic volumes over time. We validate our approach in a non-stochastic setting, using the tool Model Checker for Multi-Agent Systems (MCMAS). We develop a Statistical Model Checking module and use it in conjunction with a tool chain that integrates a traffic simulator (SUMO) and a network simulator (OMNeT++/Veins) to study the impact of communications on traffic policies.
交通交叉口作为agent:一种分析通信agent的模型检验方法
交通政策的分析,例如,十字路口的绿灯和红灯的持续时间,可能是相当具有挑战性的。虽然采用通讯系统可能导致更好的解决办法,但在可能出现通讯故障和延误的情况下分析和制订政策是很重要的。考虑到交通的随机性,将该问题作为概率认知时间逻辑中的模型检验问题似乎很有希望。在这项工作中,我们提出了一种方法,使用认知模式来模拟多个十字路口之间的通信影响,并使用时间模式来模拟交通量随时间的变化。我们在非随机设置中验证了我们的方法,使用工具模型检查器多代理系统(MCMAS)。我们开发了一个统计模型检查模块,并将其与集成了交通模拟器(SUMO)和网络模拟器(omnet++ / vein)的工具链结合使用,以研究通信对交通策略的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信