{"title":"Random forest-based active learning for content-based image retrieval","authors":"N. Bhosle, M. Kokare","doi":"10.1504/ijiids.2020.10030218","DOIUrl":null,"url":null,"abstract":"The classification-based relevance feedback approach suffers from the problem of imbalanced training dataset, which causes instability and degradation in the retrieval results. In order to tackle with this problem, a novel active learning approach based on random forest classifier and feature reweighting technique is proposed in this paper. Initially, a random forest classifier is used to learn the user's retrieval intention. Then, in active learning the most informative classified samples are selected for manual labelling and added in training dataset, for retraining the classifier. Also, a feature reweighting technique based on Hebbian learning is embedded in the retrieval loop to find the weights of most perceptive features used for image representation. These techniques are combined together to form a hypothesised solution for the image retrieval problem. The experimental evaluation of the proposed system is carried out on two different databases and shows a noteworthy enhancement in retrieval results.","PeriodicalId":39658,"journal":{"name":"International Journal of Intelligent Information and Database Systems","volume":"28 1","pages":"72-88"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijiids.2020.10030218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 5
Abstract
The classification-based relevance feedback approach suffers from the problem of imbalanced training dataset, which causes instability and degradation in the retrieval results. In order to tackle with this problem, a novel active learning approach based on random forest classifier and feature reweighting technique is proposed in this paper. Initially, a random forest classifier is used to learn the user's retrieval intention. Then, in active learning the most informative classified samples are selected for manual labelling and added in training dataset, for retraining the classifier. Also, a feature reweighting technique based on Hebbian learning is embedded in the retrieval loop to find the weights of most perceptive features used for image representation. These techniques are combined together to form a hypothesised solution for the image retrieval problem. The experimental evaluation of the proposed system is carried out on two different databases and shows a noteworthy enhancement in retrieval results.
期刊介绍:
Intelligent information systems and intelligent database systems are a very dynamically developing field in computer sciences. IJIIDS provides a medium for exchanging scientific research and technological achievements accomplished by the international community. It focuses on research in applications of advanced intelligent technologies for data storing and processing in a wide-ranging context. The issues addressed by IJIIDS involve solutions of real-life problems, in which it is necessary to apply intelligent technologies for achieving effective results. The emphasis of the reported work is on new and original research and technological developments rather than reports on the application of existing technology to different sets of data.