Insulator nondestructive testing based on VGGNet algorithm

Q3 Engineering
Ma Lixin, Dou Chenfei, Song Chencan, Yan Tianxiao
{"title":"Insulator nondestructive testing based on VGGNet algorithm","authors":"Ma Lixin, Dou Chenfei, Song Chencan, Yan Tianxiao","doi":"10.12086/OEE.2021.200072","DOIUrl":null,"url":null,"abstract":"In the power system, it is difficult to detect the insulator's deterioration in operation. Aiming at this problem, this thesis applies the convolution neural network algorithm to evaluate the insulator's deterioration degree based on the deep analysis of the principle and structure of the convolution neural network model. Firstly, the power frequency flashover test was conducted on the insulator to produce three states as follows: no discharge, weak discharge, and strong discharge. Moreover, the Ultraviolet imager was applied to collect the insulator's ultraviolet images in different discharge state to establish the ultraviolet images sample library. Subsequently, the VGGNet framework neural network algorithm was applied to perform the classification training and the state-prediction evaluation on the samples so as to eventually achieve the purpose of judging whether the insulator is degraded. From the experimental results, it can be seen that the accuracy rate of the algorithm is as high as 98.4%, which has broad application prospects in the insulator's degradation detection. Furthermore, it provides a mentality for the reliability detection of other power equipments.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In the power system, it is difficult to detect the insulator's deterioration in operation. Aiming at this problem, this thesis applies the convolution neural network algorithm to evaluate the insulator's deterioration degree based on the deep analysis of the principle and structure of the convolution neural network model. Firstly, the power frequency flashover test was conducted on the insulator to produce three states as follows: no discharge, weak discharge, and strong discharge. Moreover, the Ultraviolet imager was applied to collect the insulator's ultraviolet images in different discharge state to establish the ultraviolet images sample library. Subsequently, the VGGNet framework neural network algorithm was applied to perform the classification training and the state-prediction evaluation on the samples so as to eventually achieve the purpose of judging whether the insulator is degraded. From the experimental results, it can be seen that the accuracy rate of the algorithm is as high as 98.4%, which has broad application prospects in the insulator's degradation detection. Furthermore, it provides a mentality for the reliability detection of other power equipments.
基于VGGNet算法的绝缘子无损检测
在电力系统中,绝缘子在运行过程中的劣化是难以检测的。针对这一问题,本文在深入分析卷积神经网络模型原理和结构的基础上,应用卷积神经网络算法对绝缘子劣化程度进行评估。首先对绝缘子进行工频闪络试验,产生无放电、弱放电和强放电三种状态。利用紫外成像仪采集绝缘子在不同放电状态下的紫外图像,建立了绝缘子紫外图像样本库。随后,利用VGGNet框架神经网络算法对样本进行分类训练和状态预测评估,最终达到判断绝缘子是否退化的目的。从实验结果可以看出,该算法的准确率高达98.4%,在绝缘子退化检测中具有广阔的应用前景。同时也为其他电力设备的可靠性检测提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信