Implementasi Algoritma CNN Untuk Pemilahan Jenis Sampah Berbasis Android Dengan Metode CRISP-DM

Sita Alden, Betha Nurina Sari
{"title":"Implementasi Algoritma CNN Untuk Pemilahan Jenis Sampah Berbasis Android Dengan Metode CRISP-DM","authors":"Sita Alden, Betha Nurina Sari","doi":"10.31294/inf.v10i1.14985","DOIUrl":null,"url":null,"abstract":"Garbage is a global problem, especially in developing countries. People often don't sort the waste properly, causing contaminated waste that can't be recycled. An Android-based application using Convolutional Neural Network (CNN) algorithm can help people sort waste correctly. The application receives input in the form of waste photos taken by users and classifies the waste types using CNN algorithm. The results are displayed to the user with accurate information to dispose of waste into the right trash can. The testing using Transfer Learning CNN with Mobile Net architecture on 5,428 waste datasets resulted in 97.95% precision and 95.18% recall. Using tensorflow Lite library on Android, banana peel waste can be detected with 96% accuracy as organic waste and cardboard waste can be detected with 99% accuracy as inorganic waste","PeriodicalId":32029,"journal":{"name":"Proxies Jurnal Informatika","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proxies Jurnal Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31294/inf.v10i1.14985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Garbage is a global problem, especially in developing countries. People often don't sort the waste properly, causing contaminated waste that can't be recycled. An Android-based application using Convolutional Neural Network (CNN) algorithm can help people sort waste correctly. The application receives input in the form of waste photos taken by users and classifies the waste types using CNN algorithm. The results are displayed to the user with accurate information to dispose of waste into the right trash can. The testing using Transfer Learning CNN with Mobile Net architecture on 5,428 waste datasets resulted in 97.95% precision and 95.18% recall. Using tensorflow Lite library on Android, banana peel waste can be detected with 96% accuracy as organic waste and cardboard waste can be detected with 99% accuracy as inorganic waste
采用了CNN算法的Android垃圾分类方法CRISP-DM方法
垃圾是一个全球性问题,尤其是在发展中国家。人们通常没有正确分类垃圾,导致污染的垃圾无法回收。一款使用卷积神经网络(CNN)算法的安卓应用程序可以帮助人们正确分类垃圾。应用程序以用户拍摄的垃圾照片的形式接收输入,并使用CNN算法对垃圾类型进行分类。结果将显示给用户,并提供准确的信息,以便将垃圾处理到正确的垃圾桶中。基于移动网络架构的迁移学习CNN在5428个垃圾数据集上进行测试,准确率为97.95%,召回率为95.18%。使用Android上的tensorflow Lite库,香蕉皮废物作为有机废物的检测准确率为96%,纸板废物作为无机废物的检测准确率为99%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
20
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信