A deep first-order system least squares method for solving elliptic PDEs

Francisco M. Bersetche, Juan Pablo Borthagaray
{"title":"A deep first-order system least squares method for solving elliptic PDEs","authors":"Francisco M. Bersetche, Juan Pablo Borthagaray","doi":"10.48550/arXiv.2204.07227","DOIUrl":null,"url":null,"abstract":". We propose a First-Order System Least Squares (FOSLS) method based on deep-learning for numerically solving second-order elliptic PDEs. The method we propose is capable of dealing with either variational and non-variational problems, and because of its meshless nature, it can also deal with problems posed in high-dimensional domains. We prove the Γ-convergence of the neural network approximation towards the solution of the continuous problem, and extend the convergence proof to some well-known related methods. Finally, we present several numerical examples illustrating the performance of our discretization.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.07227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

. We propose a First-Order System Least Squares (FOSLS) method based on deep-learning for numerically solving second-order elliptic PDEs. The method we propose is capable of dealing with either variational and non-variational problems, and because of its meshless nature, it can also deal with problems posed in high-dimensional domains. We prove the Γ-convergence of the neural network approximation towards the solution of the continuous problem, and extend the convergence proof to some well-known related methods. Finally, we present several numerical examples illustrating the performance of our discretization.
求解椭圆偏微分方程的深度一阶系统最小二乘法
。提出了一种基于深度学习的一阶系统最小二乘(FOSLS)方法来数值求解二阶椭圆偏微分方程。我们提出的方法既可以处理变分问题,也可以处理非变分问题,而且由于它的无网格性质,它也可以处理高维域的问题。证明了神经网络逼近连续问题解的Γ-convergence性,并将其收敛性证明推广到一些著名的相关方法。最后,我们给出了几个数值例子来说明我们的离散化的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信