A. Novikov, D. Voskov, M. Khait, H. Hajibeygi, J. Jansen, TU Delft
{"title":"A Collocated Finite Volume Scheme for High-Performance Simulation of Induced Seismicity in Geo-Energy Applications","authors":"A. Novikov, D. Voskov, M. Khait, H. Hajibeygi, J. Jansen, TU Delft","doi":"10.2118/203903-ms","DOIUrl":null,"url":null,"abstract":"\n We develop a collocated Finite Volume Method (FVM) to study induced seismicity as a result of pore pressure fluctuations. A discrete system is obtained based on a fully-implicit coupled description of flow, elastic deformation, and contact mechanics at fault surfaces on a fully unstructured mesh. The cell-centered collocated scheme leads to convenient integration of the different physical equations, as the unknowns share the same discrete locations on the mesh. Additionally, a multi-point flux approximation is formulated in a general procedure to treat heterogeneity, anisotropy, and cross-derivative terms for both flow and mechanics equations. The resulting system, though flexible and accurate, can lead to excessive computational costs for field-relevant applications. To resolve this limitation, a scalable parallel solution algorithm is developed and presented. Several proof-of-concept numerical tests, including benchmark studies with analytical solutions, are investigated. It is found that the presented method is indeed accurate, stable and efficient; and as such promising for accurate and efficient simulation of induced seismicity.","PeriodicalId":11146,"journal":{"name":"Day 1 Tue, October 26, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 26, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/203903-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We develop a collocated Finite Volume Method (FVM) to study induced seismicity as a result of pore pressure fluctuations. A discrete system is obtained based on a fully-implicit coupled description of flow, elastic deformation, and contact mechanics at fault surfaces on a fully unstructured mesh. The cell-centered collocated scheme leads to convenient integration of the different physical equations, as the unknowns share the same discrete locations on the mesh. Additionally, a multi-point flux approximation is formulated in a general procedure to treat heterogeneity, anisotropy, and cross-derivative terms for both flow and mechanics equations. The resulting system, though flexible and accurate, can lead to excessive computational costs for field-relevant applications. To resolve this limitation, a scalable parallel solution algorithm is developed and presented. Several proof-of-concept numerical tests, including benchmark studies with analytical solutions, are investigated. It is found that the presented method is indeed accurate, stable and efficient; and as such promising for accurate and efficient simulation of induced seismicity.