Estimating random effects in a finite Markov chain with absorbing states: Application to cognitive data.

IF 1 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Interdisciplinary Science Reviews Pub Date : 2023-08-01 Epub Date: 2023-01-19 DOI:10.1111/stan.12286
Pei Wang, Erin L Abner, Changrui Liu, David W Fardo, Frederick A Schmitt, Gregory A Jicha, Linda J Van Eldik, Richard J Kryscio
{"title":"Estimating random effects in a finite Markov chain with absorbing states: Application to cognitive data.","authors":"Pei Wang, Erin L Abner, Changrui Liu, David W Fardo, Frederick A Schmitt, Gregory A Jicha, Linda J Van Eldik, Richard J Kryscio","doi":"10.1111/stan.12286","DOIUrl":null,"url":null,"abstract":"<p><p>Finite Markov chains with absorbing states are popular tools for analyzing longitudinal data with categorical responses. The one step transition probabilities can be defined in terms of fixed and random effects but it is difficult to estimate these effects due to many unknown parameters. In this article we propose a three-step estimation method. In the first step the fixed effects are estimated by using a marginal likelihood function, in the second step the random effects are estimated after substituting the estimated fixed effects into a joint likelihood function defined as a h-likelihood, and in the third step the covariance matrix for the vector of random effects is estimated using the Hessian matrix for this likelihood function. An application involving an analysis of longitudinal cognitive data is used to illustrate the method.</p>","PeriodicalId":50352,"journal":{"name":"Interdisciplinary Science Reviews","volume":"16 1","pages":"304-321"},"PeriodicalIF":1.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415262/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Science Reviews","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12286","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Finite Markov chains with absorbing states are popular tools for analyzing longitudinal data with categorical responses. The one step transition probabilities can be defined in terms of fixed and random effects but it is difficult to estimate these effects due to many unknown parameters. In this article we propose a three-step estimation method. In the first step the fixed effects are estimated by using a marginal likelihood function, in the second step the random effects are estimated after substituting the estimated fixed effects into a joint likelihood function defined as a h-likelihood, and in the third step the covariance matrix for the vector of random effects is estimated using the Hessian matrix for this likelihood function. An application involving an analysis of longitudinal cognitive data is used to illustrate the method.

估计具有吸收状态的有限马尔可夫链中的随机效应:认知数据的应用。
具有吸收状态的有限马尔可夫链是分析具有分类响应的纵向数据的常用工具。一步过渡概率可以用固定效应和随机效应来定义,但由于未知参数较多,很难估计这些效应。在本文中,我们提出了一种三步估算法。第一步,使用边际似然函数估算固定效应;第二步,将估算出的固定效应代入定义为 h-似然的联合似然函数中,估算随机效应;第三步,使用该似然函数的 Hessian 矩阵估算随机效应向量的协方差矩阵。该方法的应用涉及对纵向认知数据的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Science Reviews
Interdisciplinary Science Reviews 综合性期刊-综合性期刊
CiteScore
2.30
自引率
9.10%
发文量
20
审稿时长
>12 weeks
期刊介绍: Interdisciplinary Science Reviews is a quarterly journal that aims to explore the social, philosophical and historical interrelations of the natural sciences, engineering, mathematics, medicine and technology with the social sciences, humanities and arts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信