Drawing with Thinning under Viscoplasticity Deformation of the Anisotropic Material

Q3 Mathematics
V. Chudin, V. Platonov
{"title":"Drawing with Thinning under Viscoplasticity Deformation of the Anisotropic Material","authors":"V. Chudin, V. Platonov","doi":"10.18698/0236-3941-2023-2-73-82","DOIUrl":null,"url":null,"abstract":"The paper considers the drawing process with wall thinning of the anisotropic workpieces made of high-strength materials exposed to viscoplasticity deformation. Scientific literature is paying insufficient attention to calculation of the deformation processes of workpieces exposed to viscoplasticity. Relationships are proposed to determine stresses and continuity of the workpiece material during drawing in heating the cylindrical products with a thinned wall. State of hot material viscoplasticity is accepted under the plane deformation scheme. Equilibrium equation, yield condition for anisotropic material and discontinuity kinetics equations were used making it possible to predict strength characteristics and accuracy of the products obtained. Calculations of the drawing process modes for workpieces made of the AMg6 aluminum alloy and of the VT6s titanium alloy were performed. Graphic dependences are demonstrated of alterations in the operation specific force and in the material continuity value on the motion speed of the deforming punch. At the given forming temperatures, the energy continuity equation corresponds to the aluminum alloy, and the deformation equation corresponds to the titanium alloy. Influence of the workpiece mechanical properties anisotropy on the drawing technological conditions was studied. It is shown that force modes and continuity alteration of the deformed material depend on the anisotropy coefficient at a given temperature. This factor is determined by strain strengthening of the workpiece material and softening over time","PeriodicalId":12961,"journal":{"name":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/0236-3941-2023-2-73-82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers the drawing process with wall thinning of the anisotropic workpieces made of high-strength materials exposed to viscoplasticity deformation. Scientific literature is paying insufficient attention to calculation of the deformation processes of workpieces exposed to viscoplasticity. Relationships are proposed to determine stresses and continuity of the workpiece material during drawing in heating the cylindrical products with a thinned wall. State of hot material viscoplasticity is accepted under the plane deformation scheme. Equilibrium equation, yield condition for anisotropic material and discontinuity kinetics equations were used making it possible to predict strength characteristics and accuracy of the products obtained. Calculations of the drawing process modes for workpieces made of the AMg6 aluminum alloy and of the VT6s titanium alloy were performed. Graphic dependences are demonstrated of alterations in the operation specific force and in the material continuity value on the motion speed of the deforming punch. At the given forming temperatures, the energy continuity equation corresponds to the aluminum alloy, and the deformation equation corresponds to the titanium alloy. Influence of the workpiece mechanical properties anisotropy on the drawing technological conditions was studied. It is shown that force modes and continuity alteration of the deformed material depend on the anisotropy coefficient at a given temperature. This factor is determined by strain strengthening of the workpiece material and softening over time
各向异性材料粘塑性变形下的减薄拉伸
研究了各向异性高强材料在粘塑性变形条件下的拉深减壁工艺。科学文献对粘塑性作用下工件变形过程的计算重视不够。提出了在薄壁圆柱制品加热拉深过程中确定工件材料应力和连续性的关系式。在平面变形方案下,热材料的粘塑性状态被接受。利用各向异性材料的平衡方程、屈服条件和不连续动力学方程,可以预测所得产品的强度特性和精度。对AMg6铝合金和VT6s钛合金的拉深工艺模式进行了计算。图形依赖于操作比力和材料连续值对变形冲床运动速度的变化。在给定的成形温度下,能量连续性方程对应于铝合金,变形方程对应于钛合金。研究了工件力学性能各向异性对拉伸工艺条件的影响。结果表明,在一定温度下,变形材料的受力模式和连续变化与各向异性系数有关。这个因素是由工件材料的应变强化和随时间的软化决定的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
40
期刊介绍: The journal is aimed at publishing most significant results of fundamental and applied studies and developments performed at research and industrial institutions in the following trends (ASJC code): 2600 Mathematics 2200 Engineering 3100 Physics and Astronomy 1600 Chemistry 1700 Computer Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信