{"title":"Quantization of Hamiltonian coactions via twist","authors":"P. Bieliavsky, C. Esposito, R. Nest","doi":"10.4310/JSG.2020.V18.N2.A2","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a notion of quantum Hamiltonian (co)action of Hopf algebras endowed with Drinfel'd twist structure (resp., 2-cocycles). First, we define a classical Hamiltonian action in the setting of Poisson Lie groups compatible with the 2-cocycle stucture and we discuss a concrete example. This allows us to construct, out of the classical momentum map, a quantum momentum map in the setting of Hopf coactions and to quantize it by using Drinfel'd approach.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"14 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.V18.N2.A2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we introduce a notion of quantum Hamiltonian (co)action of Hopf algebras endowed with Drinfel'd twist structure (resp., 2-cocycles). First, we define a classical Hamiltonian action in the setting of Poisson Lie groups compatible with the 2-cocycle stucture and we discuss a concrete example. This allows us to construct, out of the classical momentum map, a quantum momentum map in the setting of Hopf coactions and to quantize it by using Drinfel'd approach.
期刊介绍:
Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.