A dirichlet multinomial mixture model-based approach for short text clustering

Jianhua Yin, Jianyong Wang
{"title":"A dirichlet multinomial mixture model-based approach for short text clustering","authors":"Jianhua Yin, Jianyong Wang","doi":"10.1145/2623330.2623715","DOIUrl":null,"url":null,"abstract":"Short text clustering has become an increasingly important task with the popularity of social media like Twitter, Google+, and Facebook. It is a challenging problem due to its sparse, high-dimensional, and large-volume characteristics. In this paper, we proposed a collapsed Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture model for short text clustering (abbr. to GSDMM). We found that GSDMM can infer the number of clusters automatically with a good balance between the completeness and homogeneity of the clustering results, and is fast to converge. GSDMM can also cope with the sparse and high-dimensional problem of short texts, and can obtain the representative words of each cluster. Our extensive experimental study shows that GSDMM can achieve significantly better performance than three other clustering models.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"443","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 443

Abstract

Short text clustering has become an increasingly important task with the popularity of social media like Twitter, Google+, and Facebook. It is a challenging problem due to its sparse, high-dimensional, and large-volume characteristics. In this paper, we proposed a collapsed Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture model for short text clustering (abbr. to GSDMM). We found that GSDMM can infer the number of clusters automatically with a good balance between the completeness and homogeneity of the clustering results, and is fast to converge. GSDMM can also cope with the sparse and high-dimensional problem of short texts, and can obtain the representative words of each cluster. Our extensive experimental study shows that GSDMM can achieve significantly better performance than three other clustering models.
基于dirichlet多项混合模型的短文本聚类方法
随着Twitter、Google+和Facebook等社交媒体的普及,短文本聚类已经成为一项越来越重要的任务。由于其稀疏、高维、大体积的特点,这是一个具有挑战性的问题。本文针对短文本聚类的Dirichlet多项式混合模型(简称GSDMM)提出了一种坍缩的Gibbs抽样算法。我们发现,GSDMM可以自动推断聚类的数量,在聚类结果的完备性和均匀性之间取得很好的平衡,收敛速度快。GSDMM还可以处理短文本的稀疏和高维问题,并可以获得每个聚类的代表词。我们广泛的实验研究表明,GSDMM可以获得明显优于其他三种聚类模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信